新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 反激電源以及變壓器設(shè)計解析

反激電源以及變壓器設(shè)計解析

作者: 時間:2012-07-02 來源:網(wǎng)絡(luò) 收藏

在flyback電路中,CCM和DCM的判斷,不是按照初級電流是否連續(xù)來判斷的。而是根據(jù)初、次級的電流合成來判斷的。只要初、次級電流不同是為零,就是CCM模式。而如果存在初、次級電流同時為零的狀態(tài),就是DCM模式。介于二者之間的就是CRM過渡模式。

本文引用地址:http://2s4d.com/article/176777.htm

  所以根據(jù)這個我們從波形圖中可以看到,當(dāng)MOS開通時,次級電流還沒有降到零。而MOS開通時,初級電流并不是從零開始上升,故而,這個例子中的電路是工作在CCM模式的。我們說過,CCM模式是能量不完全轉(zhuǎn)移的。也就是說,儲存在磁芯中的能量是沒有完全釋放的。但進(jìn)入穩(wěn)態(tài)后,每周期MOS開通時新增儲存能量是完全釋放到次級的。否則磁芯會飽和的。

  在上面的電路中,如果我們增大輸出負(fù)載的阻值,降低輸出電流,可以是電路工作模式進(jìn)入到DCM狀態(tài)。為了使輸出電壓保持不變,MOS的驅(qū)動占空比要降低一點。其他參數(shù)保持不變。

  

  同樣,設(shè)定瞬態(tài)掃描,時間10ms,步長10ns,看看穩(wěn)態(tài)時的波形吧:

  

  t0時刻,MOS開通,初級電流線性上升。

  t1時刻,MOS關(guān)斷,初級感應(yīng)電動勢耦合到次級向輸出電容轉(zhuǎn)移能量。漏感在MOS上產(chǎn)生電壓尖峰。輸出電壓通過繞組耦合,按照匝比關(guān)系反射到初級。這些和CCM模式時是一樣的。這一狀態(tài)維持到t2時刻結(jié)束。

  t2時刻,次級二極管電流,也就是次級電感電流降到了零。這意味著磁芯中的能量已經(jīng)完全釋放了。那么因為二管電流降到了零,二極管也就自動截止了,次級相當(dāng)于開路狀態(tài),輸出電壓不再反射回初級了。由于此時MOS的Vds電壓高于輸入電壓,所以在電壓差的作用下,MOS的結(jié)電容和初級電感發(fā)生諧振。諧振電流給MOS的結(jié)電容放電。Vds電壓開始下降,經(jīng)過1/4之一個諧振周期后又開始上升。由于RCD箝位電路的存在,這個振蕩是個阻尼振蕩,幅度越來越小。

  t2到t3時刻,是不向輸出電容輸送能量的。輸出完全靠輸出的儲能電容來維持。

  t3時刻,MOS再次開通,由于這之前磁芯能量已經(jīng)完全釋放,電感電流為零。所以初級的電流是從零開始上升的。

  從CCM模式和DCM模式的波形中我們可以看到二者波形的區(qū)別:

  1,初級電流,CCM模式是梯形波,而DCM模式是三角波。

  2,次級整流管電流波形,CCM模式是梯形波,DCM模式是三角波。

  3,MOS的Vds波形,CCM模式,在下一個周期開通前,Vds一直維持在Vin+Vf的平臺上。而DCM模式,在下一個周期開通前,Vds會從Vin+Vf這個平臺降下來發(fā)生阻尼振蕩。

  所以,只要有示波器,我們就可以很容易從波形上看出來反激是工作在CCM還是DCM狀態(tài)。

  另外,從DCM的工作波形上,我們也可以得到一些有意義的提示。

  例如,假如我們控制使次級繞組電流降到零的瞬間,開通MOS進(jìn)入下一個周期。這樣可以有效利用占空比,降低初級電流峰值和RMS值。

  這種工作方式就是叫做CRM方式??梢杂米冾l帶電流過零檢測的IC來控制。例如L6561MC34262等。

  還有一種方式,就是次級電流過零后,MOS結(jié)電容和初級電感諧振放電,我們假如讓MOS在Vds降到最低點的時候開通,那么可以有效降低容性開通造成的能量損失。這種就是前面提到過的QR準(zhǔn)諧振模式。這樣的控制IC現(xiàn)在也有很多。

  t1時刻,Q1關(guān)斷,由于電感電流不能突變,所以,電感電流通過D1,向C1充電。并在C1兩端電壓作用下,電流下降。

  t2時刻,電感電流和二極管電流降到零。D1截止,MOS的結(jié)電容和電感開始發(fā)生諧振。所以可以看見MOS的Vds電壓出現(xiàn)周期性的振蕩。

  t3時刻,Q1再次開通,進(jìn)入一個新的周期。

  在這個工作模式中,因為電感電流會到零,所以是電流不連續(xù)的DCM模式。有叫做能量完全轉(zhuǎn)移模式,因為電感中儲存的能量完全轉(zhuǎn)移到了輸出端。而二極管因為也工作在DCM狀態(tài),所以沒有反向恢復(fù)的問題。 但是我們應(yīng)該注意到,DCM模式的二極管、電感和MOS漏極的峰值電流是大于上面的CCM模式的。

  需要注意的是在DCM下的伏秒積的平衡是:

  Vin×(t1-t0)=Vout(t2-t1)

  只是個波形的正反問題。就好象示波器的探頭和夾子如果反過來,那么波形就倒過來。

  你注意看圖的右邊,看波形具體的定義是什么。有的波形是兩個點相減出來的。

  看波形圖也要配合這原理圖來看的。

  當(dāng)MOS開通的時候,二極管D1承受著反壓,是一個負(fù)的電壓。MOS關(guān)斷的時候,二極管導(dǎo)通,正向壓降很低二極管的反向恢復(fù),和其工作時PN結(jié)的載流子的運動有關(guān)系。DCM時,因為二極管已經(jīng)沒有電流流過了,內(nèi)部載流子已經(jīng)完成了復(fù)合過程。所以不存在反向回復(fù)問題。會有一點點反向電流,不過那是結(jié)電容造成的。

  在CCM和DCM模式有個過渡的狀態(tài),叫CRM,就是臨界模式。這個模式就是電感電流剛好降到零的時候,MOS開通。這個方式就是DCM向CCM過渡的臨界模式。CCM在輕載的時候,會進(jìn)入DCM模式的。CRM模式可以避免二極管的反向恢復(fù)問題。同時也能避免深度DCM時,電流峰值很大的缺點。要保持電路一直工作在CRM模式,需要用變頻的控制方式。

  我還注意到,在DCM模式,電感電流降到零以后,電感會和MOS的結(jié)電容諧振,給MOS結(jié)電容放電。那么,是不是可以有種工作方式是當(dāng)MOS結(jié)電容放電到最低點的時候,MOS開通進(jìn)入下一個周期,這樣就可以降低MOS開通的損耗了。答案是肯定的。這種方式就叫做準(zhǔn)諧振,QR方式。也是需要變頻控制的。不管是PWM模式,CRM模式,QR模式,現(xiàn)在都有豐富的控制IC可以提供用來。

  2、那么我們常說,反激flyback電路是從buck-boost電路演變而來,究竟是如何從buck-boost拓?fù)溲葑兂龇醇lyback拓?fù)涞哪?請看下面的圖:

  

  這是基本的buck-boost拓?fù)浣Y(jié)構(gòu)。下面我們把MOS管和二極管的位置改變一下,都挪到下面來。變成如下的電路結(jié)構(gòu)。這個電路和上面的電路是完全等效的。

  

  接下來,我們把這個電路,從A、B兩點斷開,然后在斷開的地方接入一個,得到下圖:

  

  為什么變壓器要接在這個地方?因為buck-boost電路中,電感上承受的雙向伏秒積是相等的,不會導(dǎo)致變壓器累積偏磁。我們注意到,變壓器的初級和基本拓?fù)渲械碾姼惺遣⒙?lián)關(guān)系,那么可以將變壓器的勵磁電感和這個電感合二為一。另外,把變壓器次級輸出調(diào)整一下,以適應(yīng)閱讀習(xí)慣。得到下圖:

  

  這就是最典型的隔離flyback電路了。由于變壓器的工作過程是先儲存能量后釋放,而不是僅僅擔(dān)負(fù)傳遞能量的角色。故而這個變壓器的本質(zhì)是個耦合電感。采用這個耦合電感來傳遞能量,不僅可以實現(xiàn)輸入與輸出的隔離,同時也實現(xiàn)了電壓的變換,而不是僅僅靠占空比來調(diào)節(jié)電壓。

  由于此耦合電感并非理想器件,所以存在漏感,而實際線路中也會存在雜散電感。當(dāng)MOS關(guān)斷時,漏感和雜散電感中的能量會在MOS的漏極產(chǎn)生很高的電壓尖峰,從而會導(dǎo)致器件的損壞。故而,我們必須對漏感能量進(jìn)行處理,最常見的就是增加一個RCD吸收電路。用C來暫存漏感能量,用R來耗散之。

  


上一頁 1 2 3 4 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉