光伏并網(wǎng)系統(tǒng)DC/DC全橋軟開(kāi)關(guān)變換器的研究
3 仿真研究
為了檢驗(yàn)上述分析,采用matlab仿真軟件對(duì)無(wú)源鉗位的ZVZCS全橋變換器進(jìn)行開(kāi)環(huán)仿真(如圖3所示),根據(jù)以上分析,設(shè)計(jì)電路參數(shù)為:輸入電壓Uin=36V,輸出Uo=400V,輸出功率Po=1000W,移相角30°,開(kāi)關(guān)管頻率fs=20kHz,輸出濾波電容Cf=100 μF,輸出濾波電感Lf=3mH,超前橋臂開(kāi)關(guān)管并聯(lián)電容C1=C3=0.2 μF,輸入濾波電容Cin=1000μF,諧振電感Lr=0.36 μH,鉗位電容Cc=100nF,仿真結(jié)果如下:本文引用地址:http://2s4d.com/article/175971.htm
圖3為超前臂G1的管壓降和驅(qū)動(dòng)波形;在G1導(dǎo)通之前VDS1下降為零,在G1關(guān)斷之前,VDS1保持為零,因此超前臂實(shí)現(xiàn)了ZVS。圖4為滯后臂G3的驅(qū)動(dòng)電壓和流過(guò)G3電流波形;在G3開(kāi)通之前,Ip電流保持為0,在G3關(guān)斷之前Ip電流下降為0,滯后臂實(shí)現(xiàn)了ZCS。圖5為變壓器原、副邊的電壓波形;原邊與副邊的占空比存在差異,副邊電壓上升比原邊電壓上升略微滯后,這是由變壓器原邊漏感Lr造成的;而在電壓下降時(shí)副邊電壓也滯后于原邊電壓,這是由無(wú)源鉗位電路所造成;總體來(lái)看,較傳統(tǒng)的ZVS變換器器占空比丟失有所減小。圖6是副邊整流二極管電壓、電流波形,經(jīng)過(guò)計(jì)算二極管電壓尖峰理論值為535V,實(shí)際副邊尖峰電壓約540V,二極管電流尖峰理論值5.1A,實(shí)際電流尖峰5.4A較傳統(tǒng)的ZVS變換器尖峰明顯減小。圖7是負(fù)載R輸出電壓、電流波形,由仿真圖可以看出,輸出電壓最終穩(wěn)定在400V左右,輸出電流最終接近2.5A,輸出功率Po=1000W。
4 結(jié)束語(yǔ)
本文結(jié)合光伏并網(wǎng)逆變器的特點(diǎn)介紹了一種無(wú)源鉗位的ZVZCS變換器,此變換器較好地實(shí)現(xiàn)了超前臂的ZVS、滯后橋臂的ZCS,降低了系統(tǒng)的損耗;且原副邊占空比丟失較傳統(tǒng)的ZVS變換器有所減小,副邊整流二極管的寄生振蕩基本得到消除;設(shè)計(jì)了一套1kW的參數(shù),通過(guò)matlab軟件仿真初步驗(yàn)證了此變換器的正確性和可行性。
評(píng)論