新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 開關(guān)電源設(shè)計原理及全過程(一)

開關(guān)電源設(shè)計原理及全過程(一)

作者: 時間:2013-06-12 來源:網(wǎng)絡(luò) 收藏

一、概論

本文引用地址:http://2s4d.com/article/175085.htm

是利用現(xiàn)代電力電子技術(shù),控制開關(guān)管開通和關(guān)斷的時間比率,維持穩(wěn)定輸出電壓的一種電源,一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。和線性電源相比,二者的成本都隨著輸出的增加而增長,但二者增長速率各異。線性電源成本在某一輸出點上,反而高于開關(guān)電源,這一點稱為成本反轉(zhuǎn)點。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使得開關(guān)電源技術(shù)也在不斷地創(chuàng)新,這一成本反轉(zhuǎn)點日益向低輸出電力端移動,這為開關(guān)電源提供了廣闊的發(fā)展空間

電源有如人體的心臟,是所有電設(shè)備的動力。但電源卻不像心臟那樣形式單一。因為,標志電源特性的參數(shù)有、電源、頻率、噪聲及帶載時參數(shù)的變化等等;在同一參數(shù)要求下,又有體積、重量、形態(tài)、效率、可靠性等指標,人可按此去塑造和完美電源,因此電源的形式是極多的。

隨著電力電子技術(shù)的高速發(fā)展,電力電子設(shè)備與人們的工作、生活的關(guān)系日益密切,而電子設(shè)備都離不開可靠的電源,進入80年代計算機電源全面實現(xiàn)了開關(guān)電源化,率先完成計算機的電源換代,進入90年代開關(guān)電源相繼進入各種電子、電器設(shè)備領(lǐng)域,程控交換機、通訊、電子檢測設(shè)備電源、控制設(shè)備電源等都已廣泛地使用了開關(guān)電源,更促進了開關(guān)電源技術(shù)的迅速發(fā)展。開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管開通和關(guān)斷的時間比率,維持穩(wěn)定輸出電壓的一種電源,開關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開關(guān)電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高于開關(guān)電源,這一成本反轉(zhuǎn)點。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使得開關(guān)電源技術(shù)在不斷地創(chuàng)新,這一成本反轉(zhuǎn)點日益向低輸出電力端移動,這為開關(guān)電源提供了廣泛的發(fā)展空間。

一般電力要經(jīng)過轉(zhuǎn)換才能符合使用的需要。轉(zhuǎn)換的例子有:交流轉(zhuǎn)換成直流,高電壓變成低電壓,大功率中取小功率等等。

開關(guān)電源的工作原理是:

1.交流電源輸入經(jīng)整流濾波成直流;

2.通過高頻PWM(脈沖寬度調(diào)制)信號控制開關(guān)管,將那個直流加到開關(guān)初級上;

3.開關(guān)次級感應(yīng)出高頻電壓,經(jīng)整流濾波供給負載;

4.輸出部分通過一定的電路反饋給控制電路,控制PWM占空比,以達到穩(wěn)定輸出的目的。

開關(guān)電源設(shè)計全過程

1 目的

希望以簡短的篇幅,將公司目前設(shè)計的流程做介紹,若有介紹不當之處,請不吝指教。

2 設(shè)計步驟:

2.1 繪線路圖、PCB Layout.

2.2 計算。

2.3 零件選用。

2.4 設(shè)計驗證。

3 設(shè)計流程介紹(以DA-14B33為例):

3.1 線路圖、PCB Layout請參考資識庫中說明。

3.2 變壓器計算:

變壓器是整個電源供應(yīng)器的重要核心,所以變壓器的計算及驗證是很重要的,以下即就DA-14B33變壓器做介紹。

3.2.1 決定變壓器的材質(zhì)及尺寸:

依據(jù)變壓器計算公式

B(max) = 鐵心飽合的磁通密度(Gauss)

Lp = 一次側(cè)電感值(uH)

Ip = 一次側(cè)峰值電流(A)

Np = 一次側(cè)(主線圈)圈數(shù)

Ae = 鐵心截面積(cm2)

B(max)依鐵心的材質(zhì)及本身的溫度來決定,以TDK Ferrite Core PC40為例,100℃時的B(max)為3900 Gauss,設(shè)計時應(yīng)考慮零件誤差,所以一般取3000~3500 Gauss之間,若所設(shè)計的power為Adapter(有外殼)則應(yīng)取3000 Gauss左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae越高,所以可以做較大瓦數(shù)的Power.

3.2.2 決定一次側(cè)濾波電容:

濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數(shù)的Power,但相對價格亦較高。

3.2.3 決定變壓器線徑及線數(shù):

當變壓器決定後,變壓器的Bobbin即可決定,依據(jù)Bobbin的槽寬,可決定變壓器的線徑及線數(shù),亦可計算出線徑的電流密度,電流密度一般以6A/mm2為參考,電流密度對變壓器的設(shè)計而言,只能當做參考值,最終應(yīng)以溫N記錄為準。

3.2.4 決定Duty cycle (工作周期):

由以下公式可決定Duty cycle ,Duty cycle的設(shè)計一般以50%為基準,Duty cycle若超過50%易導(dǎo)致振蕩的發(fā)生。

NS = 二次側(cè)圈數(shù)

NP = 一次側(cè)圈數(shù)

Vo = 輸出電壓

VD= 二極體順向電壓

Vin(min) = 濾波電容上的谷點電壓

D =工作周期(Duty cycle)

3.2.5 決定Ip值:

Ip = 一次側(cè)峰值電流

Iav = 一次側(cè)平均電流

Pout = 輸出瓦數(shù)

效率

PWM震蕩頻率

3.2.6 決定輔助電源的圈數(shù):

依據(jù)變壓器的圈比關(guān)系,可決定輔助電源的圈數(shù)及電壓。

3.2.7 決定MOSFET及二次側(cè)二極體的Stress(應(yīng)力):

依據(jù)變壓器的圈比關(guān)系,可以初步計算出變壓器的應(yīng)力(Stress)是否符合選用零件的規(guī)格,計算時以輸入電壓264V(電容器上為380V)為基準。

3.2.8 其它:

若輸出電壓為5V以下,且必須使用TL431而非TL432時,須考慮多一組繞組提供Photo coupler及TL431使用。

3.2.9 將所得資料代入 公式中,如此可得出B(max),若B(max)值太高或太低則參數(shù)必須重新調(diào)整。

3.2.10 DA-14B33變壓器計算:

輸出瓦數(shù)13.2W(3.3V/4A),Core = EI-28,可繞面積(槽寬)=10mm,Margin Tape =? 2.8mm(每邊),剩余可繞面積=4.4mm.

假設(shè)fT = 45 KHz ,Vin(min)=90V,? =0.7,P.F.=0.5(cosθ),Lp=1600 Uh

計算式:

變壓器材質(zhì)及尺寸:l

由以上假設(shè)可知材質(zhì)為PC-40,尺寸=EI-28,Ae=0.86cm2,可繞面積(槽寬)=10mm,因Margin Tape使用2.8mm,所以剩余可繞面積為4.4mm.

假設(shè)濾波電容使用47uF/400V,Vin(min)暫定90V.


上一頁 1 2 下一頁

關(guān)鍵詞: 開關(guān)電源 變壓器 功率

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉