可簡(jiǎn)化無(wú)線(xiàn)應(yīng)用子系統(tǒng)負(fù)載管理的解決方案
電池供電系統(tǒng)中正越來(lái)越多地采用集成電源開(kāi)關(guān),旨在斷開(kāi)所有未用子系統(tǒng)。這些應(yīng)用包括 RF 功率放大器、無(wú)線(xiàn)局域網(wǎng) (WLAN) 或藍(lán)牙模塊、LCD顯示器等等,其目的是減少漏電流,或者通過(guò)一個(gè)穩(wěn)定電源來(lái)配電。在諸如通信基礎(chǔ)設(shè)施的非便攜式應(yīng)用中,人們現(xiàn)在更多地考慮使用負(fù)載開(kāi)關(guān),目的是要對(duì)系統(tǒng)總功耗進(jìn)行優(yōu)化,以符合節(jié)能或者綠色環(huán)保規(guī)定。
本文引用地址:http://2s4d.com/article/155861.htm本文將討論在無(wú)線(xiàn)應(yīng)用中對(duì)負(fù)載進(jìn)行開(kāi)關(guān)操作時(shí)您需要考慮的一些重要規(guī)范。我們還會(huì)介紹一些傳統(tǒng)的解決方案,并表明如何使用集成負(fù)載開(kāi)關(guān)來(lái)創(chuàng)建一種經(jīng)過(guò)優(yōu)化且易于實(shí)施的解決方案。
大多數(shù)便攜式電池供電無(wú)線(xiàn)應(yīng)用(移動(dòng)電話(huà)、便攜式消費(fèi)類(lèi)電子產(chǎn)品、筆記本電腦或者其他使用 WLAN、藍(lán)牙或任何其他無(wú)線(xiàn)協(xié)議的便攜式設(shè)備)以及越來(lái)越多在電磁場(chǎng)環(huán)境(例如:RF 微波子系統(tǒng)等)下工作的非電池供電應(yīng)用都面臨如何管理其未用子系統(tǒng)功耗的挑戰(zhàn)。這樣做的目的是在符合嚴(yán)格的空間和成本規(guī)定的同時(shí)優(yōu)化其功耗預(yù)算。
降低系統(tǒng)總功耗預(yù)算普遍使用的一種簡(jiǎn)單方法是關(guān)閉那些未使用的子系統(tǒng)。通過(guò)在電源軌上安裝一個(gè)負(fù)載開(kāi)關(guān)并在需要的時(shí)候連接和斷開(kāi)該電源軌可以輕松地實(shí)現(xiàn)上述方法。例如,我們可以在不使用的時(shí)候關(guān)閉某個(gè) WLAN 電源模塊,從而消除子系統(tǒng)漏電帶來(lái)的電流損耗。使用同樣的方法,越來(lái)越多的移動(dòng)電話(huà)廠商往往會(huì)關(guān)閉閑置未使用的 RF 功率放大器,因?yàn)槠浯嬖诖罅康穆╇娏?。在許多通信基礎(chǔ)設(shè)施應(yīng)用中,一些子系統(tǒng)會(huì)在夜間關(guān)閉以降低總漏電,因?yàn)橐归g的數(shù)據(jù)處理要求并沒(méi)有晝間那么高。
負(fù)載開(kāi)關(guān)離散實(shí)施一般包括一個(gè)功率 MOSFET(通常為一個(gè) p-通道 FET,但也可根據(jù)應(yīng)用需要使用 n-通道),其門(mén)極偏置以獲得要求的性能。MOSFET 偏置電路通常包括一個(gè) NMOS 以兼容低壓控制信號(hào),但為了提高功率 FET 的性能其構(gòu)造更加復(fù)雜(例如:一個(gè)充電泵)。
理想情況下,您應(yīng)該有一個(gè)與其輸入一致的負(fù)載開(kāi)關(guān)輸出。但是,在實(shí)際運(yùn)行中,由于存在開(kāi)關(guān)的寄生效應(yīng),輸出信號(hào)改變了。
要想設(shè)計(jì)一款基于負(fù)載開(kāi)關(guān)的解決方案,下面是一些您需要考慮的最為重要的參數(shù):
· rON –通 FET 漏極到源極的導(dǎo)通狀態(tài)電阻
· IMAX 和 IPLS – 最大連續(xù)電流及最大脈沖電流
· tRISE – 上升時(shí)間
· VIH/VIL – 控制閾值
· ICC 和 ISHUTDOWN – 靜態(tài)電流和關(guān)斷電流
· 輸出放電特性
導(dǎo)通電阻明顯是一個(gè)關(guān)鍵規(guī)范,因?yàn)樗鼪Q定了流經(jīng) FET 的壓降情況。低額定電流(200mA)的應(yīng)用并不需要非常低的導(dǎo)通電阻,然而高電流的一些應(yīng)用通常會(huì)要求較低的 rON FET,目的是最小化壓降和相關(guān)功耗。流經(jīng)開(kāi)關(guān)的電壓損耗情況可通過(guò)公式 來(lái)進(jìn)行簡(jiǎn)單的計(jì)算。
除了設(shè)計(jì)人員要對(duì)其進(jìn)行開(kāi)關(guān)操作的最大連續(xù)電流以外,考慮開(kāi)關(guān)能夠接受的最大脈沖電流也至關(guān)重要。在無(wú)線(xiàn)應(yīng)用中,一些負(fù)載由溫和的連續(xù)電流組成,而這些電流的后面緊跟著 RF 功率放大器帶來(lái)的電流脈沖。例如,占空比為 12.5% 時(shí),576μS 時(shí)間內(nèi) GSM/GPRS 突發(fā)傳輸會(huì)吸取高達(dá) 1.7A 的電流。因此,對(duì)設(shè)計(jì)進(jìn)行一定調(diào)整以符合這類(lèi)脈沖電流要求很重要。
您需要考慮的另一個(gè)重要參數(shù)是開(kāi)關(guān)首次開(kāi)啟時(shí)產(chǎn)生的浪涌電流。如果自由開(kāi)啟開(kāi)關(guān),同時(shí)也取決于輸出電容的大小程度,開(kāi)關(guān)輸出會(huì)出現(xiàn)大浪涌電流帶來(lái)的電源軌壓降,而其最終將影響整個(gè)系統(tǒng)的功能性。避免出現(xiàn)這種浪涌電流的一種簡(jiǎn)單方法是延長(zhǎng)開(kāi)關(guān)的上升時(shí)間。這樣便可緩慢地對(duì)輸出電容器充電,從而降低電流峰值。為了控制功率 FET 的上升時(shí)間,可嘗試使用一個(gè)外部電阻-電容網(wǎng)絡(luò)。
另外,開(kāi)關(guān)從“開(kāi)啟”轉(zhuǎn)換到“關(guān)閉”狀態(tài)時(shí),一些用戶(hù)不喜歡電源軌浮動(dòng)。因此,在關(guān)閉開(kāi)關(guān)時(shí),可利用一個(gè)附加晶體管來(lái)下拉接地輸出。
電池供電系統(tǒng)中正越來(lái)越多地采用集成電源開(kāi)關(guān),旨在斷開(kāi)所有未用子系統(tǒng)。這些應(yīng)用包括 RF 功率放大器、無(wú)線(xiàn)局域網(wǎng) (WLAN) 或藍(lán)牙模塊、LCD顯示器等等,其目的是減少漏電流,或者通過(guò)一個(gè)穩(wěn)定電源來(lái)配電。在諸如通信基礎(chǔ)設(shè)施的非便攜式應(yīng)用中,人們現(xiàn)在更多地考慮使用負(fù)載開(kāi)關(guān),目的是要對(duì)系統(tǒng)總功耗進(jìn)行優(yōu)化,以符合節(jié)能或者綠色環(huán)保規(guī)定。
本文將討論在無(wú)線(xiàn)應(yīng)用中對(duì)負(fù)載進(jìn)行開(kāi)關(guān)操作時(shí)您需要考慮的一些重要規(guī)范。我們還會(huì)介紹一些傳統(tǒng)的解決方案,并表明如何使用集成負(fù)載開(kāi)關(guān)來(lái)創(chuàng)建一種經(jīng)過(guò)優(yōu)化且易于實(shí)施的解決方案。
大多數(shù)便攜式電池供電無(wú)線(xiàn)應(yīng)用(移動(dòng)電話(huà)、便攜式消費(fèi)類(lèi)電子產(chǎn)品、筆記本電腦或者其他使用 WLAN、藍(lán)牙或任何其他無(wú)線(xiàn)協(xié)議的便攜式設(shè)備)以及越來(lái)越多在電磁場(chǎng)環(huán)境(例如:RF 微波子系統(tǒng)等)下工作的非電池供電應(yīng)用都面臨如何管理其未用子系統(tǒng)功耗的挑戰(zhàn)。這樣做的目的是在符合嚴(yán)格的空間和成本規(guī)定的同時(shí)優(yōu)化其功耗預(yù)算。
降低系統(tǒng)總功耗預(yù)算普遍使用的一種簡(jiǎn)單方法是關(guān)閉那些未使用的子系統(tǒng)。通過(guò)在電源軌上安裝一個(gè)負(fù)載開(kāi)關(guān)并在需要的時(shí)候連接和斷開(kāi)該電源軌可以輕松地實(shí)現(xiàn)上述方法。例如,我們可以在不使用的時(shí)候關(guān)閉某個(gè) WLAN 電源模塊,從而消除子系統(tǒng)漏電帶來(lái)的電流損耗。使用同樣的方法,越來(lái)越多的移動(dòng)電話(huà)廠商往往會(huì)關(guān)閉閑置未使用的 RF 功率放大器,因?yàn)槠浯嬖诖罅康穆╇娏?。在許多通信基礎(chǔ)設(shè)施應(yīng)用中,一些子系統(tǒng)會(huì)在夜間關(guān)閉以降低總漏電,因?yàn)橐归g的數(shù)據(jù)處理要求并沒(méi)有晝間那么高。
負(fù)載開(kāi)關(guān)離散實(shí)施一般包括一個(gè)功率 MOSFET(通常為一個(gè) p-通道 FET,但也可根據(jù)應(yīng)用需要使用 n-通道),其門(mén)極偏置以獲得要求的性能。MOSFET 偏置電路通常包括一個(gè) NMOS 以兼容低壓控制信號(hào),但為了提高功率 FET 的性能其構(gòu)造更加復(fù)雜(例如:一個(gè)充電泵)。
理想情況下,您應(yīng)該有一個(gè)與其輸入一致的負(fù)載開(kāi)關(guān)輸出。但是,在實(shí)際運(yùn)行中,由于存在開(kāi)關(guān)的寄生效應(yīng),輸出信號(hào)改變了。
要想設(shè)計(jì)一款基于負(fù)載開(kāi)關(guān)的解決方案,下面是一些您需要考慮的最為重要的參數(shù):
· rON –通 FET 漏極到源極的導(dǎo)通狀態(tài)電阻
· IMAX 和 IPLS – 最大連續(xù)電流及最大脈沖電流
· tRISE – 上升時(shí)間
· VIH/VIL – 控制閾值
· ICC 和 ISHUTDOWN – 靜態(tài)電流和關(guān)斷電流
· 輸出放電特性
導(dǎo)通電阻明顯是一個(gè)關(guān)鍵規(guī)范,因?yàn)樗鼪Q定了流經(jīng) FET 的壓降情況。低額定電流(200mA)的應(yīng)用并不需要非常低的導(dǎo)通電阻,然而高電流的一些應(yīng)用通常會(huì)要求較低的 rON FET,目的是最小化壓降和相關(guān)功耗。流經(jīng)開(kāi)關(guān)的電壓損耗情況可通過(guò)公式 來(lái)進(jìn)行簡(jiǎn)單的計(jì)算。
除了設(shè)計(jì)人員要對(duì)其進(jìn)行開(kāi)關(guān)操作的最大連續(xù)電流以外,考慮開(kāi)關(guān)能夠接受的最大脈沖電流也至關(guān)重要。在無(wú)線(xiàn)應(yīng)用中,一些負(fù)載由溫和的連續(xù)電流組成,而這些電流的后面緊跟著 RF 功率放大器帶來(lái)的電流脈沖。例如,占空比為 12.5% 時(shí),576μS 時(shí)間內(nèi) GSM/GPRS 突發(fā)傳輸會(huì)吸取高達(dá) 1.7A 的電流。因此,對(duì)設(shè)計(jì)進(jìn)行一定調(diào)整以符合這類(lèi)脈沖電流要求很重要。
您需要考慮的另一個(gè)重要參數(shù)是開(kāi)關(guān)首次開(kāi)啟時(shí)產(chǎn)生的浪涌電流。如果自由開(kāi)啟開(kāi)關(guān),同時(shí)也取決于輸出電容的大小程度,開(kāi)關(guān)輸出會(huì)出現(xiàn)大浪涌電流帶來(lái)的電源軌壓降,而其最終將影響整個(gè)系統(tǒng)的功能性。避免出現(xiàn)這種浪涌電流的一種簡(jiǎn)單方法是延長(zhǎng)開(kāi)關(guān)的上升時(shí)間。這樣便可緩慢地對(duì)輸出電容器充電,從而降低電流峰值。為了控制功率 FET 的上升時(shí)間,可嘗試使用一個(gè)外部電阻-電容網(wǎng)絡(luò)。
另外,開(kāi)關(guān)從“開(kāi)啟”轉(zhuǎn)換到“關(guān)閉”狀態(tài)時(shí),一些用戶(hù)不喜歡電源軌浮動(dòng)。因此,在關(guān)閉開(kāi)關(guān)時(shí),可利用一個(gè)附加晶體管來(lái)下拉接地輸出。
考慮過(guò)這些重要問(wèn)題以后,對(duì)于一名經(jīng)驗(yàn)豐富的設(shè)計(jì)人員來(lái)說(shuō),基于離散式半導(dǎo)體組件來(lái)實(shí)施一款對(duì)系統(tǒng)不同負(fù)載進(jìn)行開(kāi)關(guān)的解決方案就是一件十分簡(jiǎn)單的事情了。但是,從零開(kāi)始實(shí)施這種解決方案可能會(huì)花費(fèi)大量的時(shí)間。更為重要的是,從解決方案體積和成本的角度來(lái)看,其可能并非最佳。一個(gè)基本負(fù)載開(kāi)關(guān)包括由一個(gè)功率 PMOS FET、兩個(gè) NMOS FET、一個(gè)負(fù)載電阻(讓其兼容低壓邏輯信號(hào),并在閑置不用的時(shí)候?qū)壏烹姡┮约耙粋€(gè)控制上升時(shí)間和避免浪涌電流的 RC 時(shí)間常數(shù)組成。這種解決方案至少使用 6 個(gè)組件,并要求 8mm2 到 20 mm2 以上的空間,具體取決于導(dǎo)通電阻要求和所使用的封裝類(lèi)型。
為了減少設(shè)計(jì)工作量并縮短產(chǎn)品上市時(shí)間,半導(dǎo)體供應(yīng)商們推出了一些易于實(shí)施、成熟、完全合格的集成負(fù)載開(kāi)關(guān)作為其系列產(chǎn)品的組成部分,例如:TPS22924C或者 TPS22902 等。諸如此類(lèi)的 IC 均具有我們前面介紹的單個(gè)超小型封裝特性。用戶(hù)現(xiàn)在可以在減少 90% 板級(jí)空間需求的同時(shí)簡(jiǎn)化其子系統(tǒng)負(fù)載管理,如圖 1 所示。
圖1:100-mOhm 和 10-mOhm 開(kāi)關(guān)要求離散式解決方案與負(fù)載開(kāi)關(guān) IC 空間分析對(duì)比。
結(jié)論
使用集成負(fù)載開(kāi)關(guān),是實(shí)施分布式電源架構(gòu)并優(yōu)化子系統(tǒng)功耗管理的一種簡(jiǎn)單方法。因其靈活性、易于實(shí)現(xiàn)性,以及更少的組件數(shù)目和更高的總可靠性——最終帶來(lái)更短的產(chǎn)品上市時(shí)間,集成負(fù)載開(kāi)關(guān)解決了廣大設(shè)計(jì)人員面臨的諸多無(wú)線(xiàn)應(yīng)用難題。
參考文獻(xiàn)
如欲了解本文所述技術(shù)和產(chǎn)品的更多詳情,敬請(qǐng)?jiān)L問(wèn):http://focus.ti.com.cn/cn/paramsearch/docs/parametricsearch.tsp?family=analogfamilyId=1643uiTemplateId=NODE_STRY_PGE_T。
評(píng)論