降低便攜式應(yīng)用的功耗
無線手持終端設(shè)備、智能電話、PDA 以及媒體播放器等新一代便攜式消費類電子產(chǎn)品均具有更多的特性和更高的性能,通常其尺寸也變得更小巧。由于這些最新的特性,這些設(shè)備均要求極高的功耗。
本文引用地址:http://2s4d.com/article/152711.htm相關(guān)示例數(shù)不勝數(shù),如具有分辨率超過 300 萬象素、高功率閃光燈 LED 或氙閃光管的相機、高級音頻或揚聲器功能,以及具有便攜式高分辨率 LCD-TV 顯示屏的無線電話。靜態(tài)和動態(tài)電源要求向設(shè)計人員提出了嚴(yán)峻的挑戰(zhàn),因此對其進(jìn)行有效地管理至關(guān)重要。隨著便攜式產(chǎn)品的功能日益豐富,應(yīng)用很快對單電源也提出了更高的要求,從而導(dǎo)致電池使用壽命相應(yīng)縮短。
另外,模擬與數(shù)字基帶 IC 處理器單元、中央處理器主機以及圖像和音頻處理器等,無論在先進(jìn)性還是在集成度方面都在不斷提升。隨著產(chǎn)品功能的增多,IC 的集成度也隨之提升,因此需要更多的電源軌,或在同樣數(shù)量的電源軌上施加更高的電源電流。
大多數(shù)便攜式消費類產(chǎn)品均使用標(biāo)準(zhǔn)的高性能鋰離子電池(通常為單電池配置)。鑒于有限的電池電量,廠商不得不針對下列兩種情況中做出決斷:要么以較短的電池使用壽命為代價為用戶提供功能豐富的應(yīng)用,要么犧牲應(yīng)用的功能豐富性而確保較長的電池使用壽命。但當(dāng)今的消費者既希望獲得高端產(chǎn)品,同時又要求電池具備超長使用壽命。
解決便攜式設(shè)備的功耗難題
為了解決上述設(shè)計難題,眾多技術(shù)紛紛問世。為了滿足處理器的需要,IC 廠商率先降低了給定性能水平的功耗。DSP 或 OMAP 內(nèi)核標(biāo)準(zhǔn)的數(shù)字 IC 制造技術(shù)采用 90nm 工藝。
自 2005 年末開始,最新一代 65nm 工藝就已經(jīng)投入了量產(chǎn)。通過“壓縮”,晶體管的密度通常會翻一番。這種技術(shù)將相同設(shè)計的尺寸壓縮至原來的一半,并將晶體管的性能比原來提高了大約 40%。這種技術(shù)大大降低了內(nèi)核電源電壓需求,而電流要求不變或更高。但是另一方面,漏電功耗顯著增高也會進(jìn)一步降低性能。
其它一些降低功耗的方法(模數(shù)集成電路的非制造技術(shù)),包括多種低功耗模式、時鐘門控、動態(tài)電壓以及頻率調(diào)節(jié)。這些技術(shù)在設(shè)計中起著很重要的作用。為了滿足功耗和降低功耗的要求,需要開發(fā)出新型制造和工藝技術(shù)。一種被應(yīng)用于 DSP 和 OMAP 處理器的稱為 SmartReflex 的新方法,就是一個很好的例子。
在硅芯片-IP 級,靜態(tài)漏電功耗被大大降低了 1000 倍。在一個電源管理單元庫實現(xiàn)分區(qū)設(shè)備電源域微粒方法 (granular approach) 的同時,對不同集成電路和系統(tǒng)構(gòu)建塊的功耗和性能進(jìn)行了協(xié)調(diào)。
該方法不但降低了總體功耗,優(yōu)化了系統(tǒng)性能,而且還延長了電池的使用壽命。憑借廣泛的智能與自適應(yīng)軟硬件技術(shù),SmartReflex 技術(shù)可以根據(jù)器件活動、工作模式和溫度的變化,對電壓、頻率和功耗進(jìn)行動態(tài)控制。
SmartReflex 技術(shù)包括動態(tài)及自適應(yīng)電壓縮放、動態(tài)電源切換以及待機漏電管理。動態(tài)電壓縮放通常會涉及到外部電源管理器件和軟件。
例如,根據(jù)于處理器負(fù)載的要求,可以調(diào)節(jié)內(nèi)核電源電壓,以滿足全部性能運行的需要或在待機模式下的節(jié)電模式。分立低壓降 (LDO)、中低功耗 DC/DC 轉(zhuǎn)換器、多通道電源管理單元 (PMU) 或其它電源均可為電路板和處理器供電(具體取決于系統(tǒng)的要求)。
電源管理設(shè)計提供了所有處理器情況下的必要電壓軌以及正確的電壓和電流。如果應(yīng)用被關(guān)閉,或被切換到預(yù)定義節(jié)電模式,那么所有處理器和電源管理器件通常都會進(jìn)入一個輕負(fù)載或待機模式。
因此,當(dāng)前電壓電平將會進(jìn)一步降低,同時電流消耗也降至最小。在理想的情況下,每個 IC 僅消耗幾 μA 的電流。到目前為止,上述情況均為靜態(tài)模式。一旦完成電源管理設(shè)計,那么幾乎就無法改變電壓軌電平。
最近,分立低功耗降壓 DC/DC 轉(zhuǎn)換器和高度集成的多通道電源管理單元已經(jīng)可以采用 I2C 串行總線。隨著串行接口在分立電源管理器件中得到使用,對電源電壓提供了新的影響途徑。
通過將軟件工具和處理器控制功能與一個串行標(biāo)準(zhǔn) I2C 接口相組合,數(shù)字與模擬電源管理芯片之間的信息可以更高的性能級別進(jìn)行交換。
電壓、電流和功耗預(yù)算的實時調(diào)節(jié)已成為現(xiàn)實;此外,還可以實現(xiàn)電源管理和監(jiān)控的軟件控制,因而在現(xiàn)有滿負(fù)載和系統(tǒng)待機模式之間可以實現(xiàn)多種節(jié)電模式。
動態(tài)電壓縮放。I2C 接口具有兩種不同的速度選擇:標(biāo)準(zhǔn)的 100 Kbps 和快速 400Kbps。在分立低功耗 DC/DC 轉(zhuǎn)換器或電源管理單元中實施動態(tài)電壓縮放,設(shè)計人員可以動態(tài)并精確地改變分立電源管理器件的輸出電壓,進(jìn)而調(diào)整任何處理器單元的內(nèi)核電源電壓。
這種設(shè)計要求使用快速 DC/DC 轉(zhuǎn)換器。例如,3 MHz 或者更高轉(zhuǎn)換頻率的轉(zhuǎn)換器(見下圖 1)可以保證快速信號瞬態(tài)響應(yīng)。
圖 1:I2C 可以動態(tài)地調(diào)整并調(diào)節(jié)主 DC/DC 轉(zhuǎn)換器的輸出電壓
此外,低功耗 DC/DC 轉(zhuǎn)換器或電源管理單元應(yīng)具有不同的工作模式,例如,PFM 或強制脈沖頻率調(diào)制,以允許它們對自身進(jìn)行調(diào)節(jié)或通過I2C控制信號進(jìn)入某個系統(tǒng)的電源配置。
該設(shè)計可在不犧牲整體性能的情況下精確滿足系統(tǒng)性能需求。因此,每一種工作狀態(tài)或處理器模式都實現(xiàn)了最低功耗模式,從而延長了電池的使用壽命,減少了各器件的散熱量,并提高了整體系統(tǒng)性能。
降低功耗。在本例中,分立低功耗 DC/DC 轉(zhuǎn)換器 TPS62350采用了 SmartReflex 技術(shù)。采用微型 12 球柵芯片級封裝的該單通道降壓轉(zhuǎn)換器提供了高達(dá) 800mA 的輸出電流,超出了效率為 95% 的單體鋰離子電池的輸入電壓范圍。利用 I2C 接口,可對輸出電壓進(jìn)行調(diào)節(jié),以支持處理器并可以“微小步長 (tiny step)”調(diào)整電壓軌,最低到 0.6V。
這種可編程 DC/DC 轉(zhuǎn)換器有助于延長 3G智能電話、PDA、數(shù)碼相機以及其它便攜式應(yīng)用的電池使用壽命。
借助 I2C 接口降低功耗的另一種方法是采用諸如 TPS65020這樣的器件(參見下圖 2)。這是一款高度集成的 PMU,其具有六個輸出通道、三個低功耗、效率高達(dá) 97% 的 DC/DC 轉(zhuǎn)換器,以及三個 LDO。
圖 2:TPS62350 單通道降壓轉(zhuǎn)換器提供了高達(dá) 800mA 的輸出電流,超出了單體鋰離子電池的輸入電壓范圍
在該器件中,I2C能夠動態(tài)地調(diào)整和調(diào)節(jié)通常為處理器內(nèi)核供電的主 DC/DC 轉(zhuǎn)換器的輸出電壓。另外兩種 DC/DC 轉(zhuǎn)換器可以用于 I/O 電源、存儲器或其它功能供電。不同的構(gòu)建塊(如該 IC 所有這三個 LDO 或 DC/DC 轉(zhuǎn)換器)在 I2C 接口的幫助下,都可以被關(guān)閉/開啟以降低整個 PMU 的功耗和散熱量。關(guān)閉不同模塊還可以降低靜態(tài)電流消耗。
除已討論的節(jié)電方法以外,新型制造技術(shù)在未來將發(fā)揮重要的作用。隨著工藝技術(shù)從 90nm 發(fā)展到 65nm 甚至更小,這里所討論的技術(shù)實施將會變得更加重要。
在 DSP 內(nèi)核及其分立模擬電源組件之間的通信將會增加,以實現(xiàn)靈活實時的功耗調(diào)節(jié)及軟件控制的功耗方案。總之,所有這些改進(jìn)和方法必須很好地配合使用,才能實現(xiàn)性能的優(yōu)化,并最大限度地延長電池使用壽命,以此來使消費者受益。
評論