新聞中心

EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 嵌入式系統(tǒng)的PCI Express時(shí)鐘分配

嵌入式系統(tǒng)的PCI Express時(shí)鐘分配

作者: 時(shí)間:2010-02-23 來(lái)源:網(wǎng)絡(luò) 收藏

中其它所有的卡將禁用板上發(fā)生器,形成基準(zhǔn)線跡的三態(tài)驅(qū)動(dòng)器,并接收來(lái)自背板的基準(zhǔn)。隨后,這將通過(guò)基于PLL的ZDB提高到板上所需和的基準(zhǔn)時(shí)鐘頻率,并將劃分了的基準(zhǔn)時(shí)鐘驅(qū)動(dòng)到的其它卡上。其它所有的卡將失去對(duì)板上時(shí)鐘發(fā)電器的使用,形成基準(zhǔn)時(shí)鐘線跡三態(tài)驅(qū)動(dòng)器,并接收來(lái)自背板的基準(zhǔn)時(shí)鐘。這將通過(guò)基于PLL的ZDB提高到板上和所需的基準(zhǔn)時(shí)鐘頻率。接收和提高來(lái)自背板的基準(zhǔn)時(shí)鐘的電路通常在主卡上,如果需要,可以用來(lái)生成所需的另一個(gè)基準(zhǔn)時(shí)鐘頻率。為了實(shí)現(xiàn)e所需的低抖動(dòng),IDT FemtoClock PLL技術(shù)可用于時(shí)鐘合成器和ZDB。

像這種設(shè)計(jì)的最主要難點(diǎn)之一在于,PLL雖然可以過(guò)濾掉頻率高于PLL本身環(huán)路帶寬的噪聲信號(hào),但在低于PLL環(huán)路帶寬的低頻部分,卻增加了很多在調(diào)制頻率附近的附加抖動(dòng)。另外,由于PLL無(wú)法完全跟蹤基準(zhǔn)時(shí)鐘輸入的相位和頻率變化,從而引起跟蹤偏移。像這種包含兩個(gè)以上用于頻率生成和轉(zhuǎn)換的級(jí)聯(lián)型PLL的背板e方案必須謹(jǐn)慎對(duì)待,以盡量降低相位抖動(dòng)和PLL跟蹤偏移。

e抖動(dòng)的測(cè)量

在深入分析這個(gè)解決方案的性能之前,需要先討論P(yáng)CIe抖動(dòng)性能的分析過(guò)程。 PCIe抖動(dòng)工作組關(guān)注的一個(gè)首要問(wèn)題是確定一個(gè)恰當(dāng)?shù)幕鶞?zhǔn)時(shí)鐘。為了這個(gè)目的,需要考慮基準(zhǔn)時(shí)鐘的Tx和Rx PLL及相位插值器的過(guò)濾效果。同時(shí),為了避免對(duì)基準(zhǔn)時(shí)鐘規(guī)格不足,這些PLL的峰值效應(yīng)也需要考慮。這一過(guò)程分為四個(gè)主要步驟:

1. 確定每個(gè)周期累積的相位誤差。串行數(shù)據(jù)傳輸不像并行數(shù)據(jù)傳輸那樣關(guān)心時(shí)鐘的Cycle-to-Cycle抖動(dòng)和Period抖動(dòng),串行數(shù)據(jù)傳輸更關(guān)心累積相位誤。因此,我們必須首先確定每個(gè)時(shí)鐘周期的累積相位誤差。
2. 將離散傅立葉變換(Discrete Fourier Transform,簡(jiǎn)稱DFT)用于累積相位誤差數(shù)據(jù),從而將時(shí)域的分析轉(zhuǎn)變到頻域進(jìn)行分析。
3. 將系統(tǒng)轉(zhuǎn)移函數(shù)用于累積相位誤差數(shù)據(jù)的DFT。
4. 執(zhí)行逆DFT,使過(guò)濾后的累積相位誤差數(shù)據(jù)轉(zhuǎn)回到時(shí)域內(nèi),這便是最終結(jié)果。

同時(shí)還要注意,通過(guò)設(shè)定系統(tǒng)轉(zhuǎn)移函數(shù)s=jω,可以在復(fù)雜的頻域?qū)崿F(xiàn)PLL系統(tǒng)的過(guò)濾分析。該分析對(duì)連續(xù)系統(tǒng)很有用,但由于采用相位檢測(cè)器和反饋除法器等數(shù)字元件,大多數(shù)現(xiàn)代PLL方案不是純粹的模擬系統(tǒng),因而z域數(shù)字分析會(huì)更精確。但是,PCI抖動(dòng)工作組的初步研究表明,受s域分析影響的誤差最小,因此s域分析可用于建模。然而,當(dāng)基頻低于PLL環(huán)路帶寬十倍時(shí),s域近似值會(huì)顯著背離真值。所以系統(tǒng)設(shè)計(jì)師在選擇PLL時(shí)必須時(shí)刻謹(jǐn)記這一點(diǎn)。

抖動(dòng)測(cè)量技巧

測(cè)量方法不當(dāng)很容易得到兩倍以上于正確方法的抖動(dòng)測(cè)量值。這里有一些技巧:

從被測(cè)器件到示波器都使用屏蔽同軸電纜,并在示波器的輸入端做好恰當(dāng)?shù)钠ヅ洹?br /> 1. 如果使用高阻抗探頭,可使用低電容探頭和接地夾,而非電線。
2. 確保你使用了與樣本量一致的最高采樣率。
3. 使示波器屏幕上的縱坐標(biāo)最大,以便精確地測(cè)量電壓。
4. 使顯示器、開(kāi)關(guān)式電源和手機(jī)遠(yuǎn)離被測(cè)器件??尚袝r(shí)使用線性電源。
5. 當(dāng)執(zhí)行差分測(cè)量時(shí),確保兩條電纜已經(jīng)相互糾偏。

IDT解決方案分析

IDT的工程師通過(guò)菊鏈三個(gè)特性描述板以代表子卡:ICS841S32I板,然后是ICS8743008I板,最后一個(gè)也是ICS8743008I板,創(chuàng)建了解決方案的原型,見(jiàn)圖5。在第二個(gè)ICS8743008I輸出時(shí)進(jìn)行測(cè)量。卸載來(lái)自示波器的時(shí)鐘周期數(shù)據(jù),然后由抖動(dòng)分析腳本進(jìn)行后處理。該腳本可進(jìn)行必要的頻域和時(shí)域分析。

2.5Gbps分析方法的結(jié)果為18.91ps。這一結(jié)果符合4.5倍的裕量的 86ps的PCIe峰-峰相位抖動(dòng)指標(biāo)。對(duì)于5.0Gbps操作,PCIe規(guī)定了rms相位抖動(dòng),而非峰-峰相位抖動(dòng)。這些結(jié)果也超出了規(guī)范: 0.52ps rms低頻帶和1.47ps高頻帶與3.1ps規(guī)范限制之比。

對(duì)于5.0Gbps工作,PCIe為頻域分析規(guī)定了兩個(gè)轉(zhuǎn)移函數(shù)和兩個(gè)頻率范圍。第一個(gè)轉(zhuǎn)移函數(shù)的極頻率為5MHz和16MHz,第二個(gè)轉(zhuǎn)移函數(shù)的極頻率為8MHz和16MHz。抖動(dòng)分析所得的兩個(gè)頻段為10KHz-1.5MHz(低頻帶),1.5MHz-Nyquist(高頻帶)。Nyquist表示你的分析達(dá)到了基準(zhǔn)時(shí)鐘頻率的一半。例如,在100MHz時(shí),頻域分析將達(dá)到 50MHz。分析腳本會(huì)顯示每個(gè)頻率分析頻帶間兩個(gè)轉(zhuǎn)移函數(shù)間的最差情況。

結(jié)束語(yǔ)

PCIe標(biāo)準(zhǔn)最初用于定義PC系統(tǒng),但由于其低引腳數(shù)和可擴(kuò)展的高性能,很快成為幾乎所有應(yīng)用領(lǐng)域選擇的I/O接口。高速的基準(zhǔn)時(shí)鐘給希望利用PCIe元件的系統(tǒng)工程師們提出了嚴(yán)峻的挑戰(zhàn)。他們需要、選擇兩個(gè)不同的、符合規(guī)范的基準(zhǔn)時(shí)鐘速度。

其中一個(gè)測(cè)試解決方案有助于系統(tǒng)利用支持100MHz和125MHz基準(zhǔn)時(shí)鐘的元件,并通過(guò)一個(gè)M-LVDS差分對(duì)將其分配到系統(tǒng)的所有卡上。這一解決方案也可以對(duì)卡進(jìn)行設(shè)置,因此這些卡可以在其應(yīng)用指令下作為主或端點(diǎn)操作,而且能插入系統(tǒng)的任何插槽。另外,這一解決方案降低了背板上基準(zhǔn)時(shí)鐘的工作頻率,放寬了該信號(hào)的路由限制和串?dāng)_性能。只要滿足2.5Gbps和5.0Gbps操作 PCIe規(guī)范嚴(yán)格的抖動(dòng)要求,所有這些都可以用一個(gè)設(shè)計(jì)實(shí)現(xiàn)。

linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)

上一頁(yè) 1 2 3 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉