新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > DSP系統(tǒng)電源管理技術(shù)

DSP系統(tǒng)電源管理技術(shù)

作者: 時(shí)間:2011-10-08 來源:網(wǎng)絡(luò) 收藏

在便攜式應(yīng)用中,低功耗是產(chǎn)品能否獨(dú)樹一幟的關(guān)鍵所在,其決定著產(chǎn)品的尺寸大小與操作時(shí)間。舉例來說,如果您在跨越大洋的飛行時(shí)選擇便攜式DVD播放器作為消遣,那么電池壽命將會(huì)成為您的首選標(biāo)準(zhǔn)之一。在本文中,我們將集中討論許多更為常用的基于軟件的。首先,我們從講解某些可用于嵌入式開始,并談?wù)勂湓趯?shí)時(shí)應(yīng)用中會(huì)遇到的諸多難題。效率既由硬件設(shè)計(jì)與組件選擇決定,同時(shí)也由基于軟件的運(yùn)行時(shí)決定。本文后半部分將集中展示如何將技術(shù)子集成到用于數(shù)字信號(hào)處理器()的實(shí)時(shí)操作(RTOS)中,從而使應(yīng)用開發(fā)人員選擇出可滿足其應(yīng)用要求的專用技術(shù)。我們將以德州儀器公司(TI)的(TI) /BIOS操作為作為實(shí)例,顯示運(yùn)行時(shí)電源軟件技術(shù)的實(shí)施方法。   運(yùn)行時(shí)電源管理技術(shù)

本文引用地址:http://2s4d.com/article/150132.htm

  盡管我們討論的是某些可擴(kuò)大標(biāo)準(zhǔn)多線程讀取操作系統(tǒng)(OS)的特定電源管理技術(shù),但應(yīng)當(dāng)強(qiáng)調(diào)指出的是,采用搶先式(preemptive)的多線程讀取OS本身常常能夠?qū)崿F(xiàn)顯著的電源節(jié)約。不利用OS的實(shí)時(shí)應(yīng)用常常要求應(yīng)用周期性探詢接口以檢測(cè)事件。從電源角度看,這樣的效率是相當(dāng)?shù)偷摹J褂肙S可使應(yīng)用能夠利用中斷驅(qū)動(dòng)模式,其中程序就會(huì)在需要的時(shí)候開始執(zhí)行,以響應(yīng)外部事件。此外,當(dāng)基于OS的應(yīng)用沒有可做的事情時(shí),其就會(huì)進(jìn)入空閑線程,這時(shí)則可啟動(dòng)低功率操作模式,以減少功耗。

  但是,操作系統(tǒng)除了能簡(jiǎn)單地為內(nèi)核啟用空閑模式之外,其還需要提供復(fù)雜得多的電源管理支持。在實(shí)踐中,大量功率被周邊設(shè)備所消耗,可能是片上器件,也可能是外部設(shè)備,此外存儲(chǔ)器也會(huì)消耗大量功率。任何電源管理方法都應(yīng)當(dāng)具備管理外設(shè)功耗的支持,這是至關(guān)重要的。此外,電壓與功耗之間的平方關(guān)系意味著,更高效的方法是在要求較低電壓的較低時(shí)鐘速率上執(zhí)行代碼,而不是先以最高的時(shí)鐘速率執(zhí)行而后再轉(zhuǎn)為空閑。我們將概括講解在操作系統(tǒng)中實(shí)施電源管理支持的眾多機(jī)遇:

  系統(tǒng)上電行為:

  處理器及其片上外設(shè)一般均以最高時(shí)鐘速率全面上電啟動(dòng)。不可避免的是,有些資源的供電啟動(dòng)還尚不需要,或者根本就不會(huì)在應(yīng)用過程中用到。舉例而言,MP3播放器就很少使用其USB端口與PC進(jìn)行通信。在啟動(dòng)時(shí),操作系統(tǒng)必須為應(yīng)用提供一種調(diào)節(jié)系統(tǒng)的機(jī)制,從而關(guān)閉不必要的電源消耗器件或使之處于空閑狀態(tài)。

  空閑模式:

  CMOS電路中的有效功耗只有在當(dāng)電路進(jìn)行時(shí)鐘計(jì)時(shí)的情況下才發(fā)生。通過關(guān)閉不需要的時(shí)鐘,可以消除不必要的有效功耗。在等待外部事件時(shí),大多數(shù)DSP都融入了暫時(shí)終止CPU有效功耗的機(jī)制。CPU時(shí)鐘的閑置通常由停止或閑置指令觸發(fā),其在應(yīng)用或操作系統(tǒng)閑置時(shí)進(jìn)行調(diào)用。一些DSP進(jìn)行多個(gè)時(shí)鐘域分區(qū),可以使這些域分別處于空閑狀態(tài),以中止未使用模塊中的有效功耗。例如,在TI的TMS320C5510 DSP中,可以有選擇性地使6個(gè)時(shí)鐘域閑置,其中包括CPU、高速緩存、DMA、外設(shè)時(shí)鐘、時(shí)鐘生成器,以及外部存儲(chǔ)器接口。

  除了支持閑置DSP及其片上外設(shè)之外,操作系統(tǒng)還必須提供用于閑置外部周邊設(shè)備的機(jī)制。例如,一些編碼譯碼器具備可以被激活的內(nèi)置低功率模式。我們面臨的一個(gè)挑戰(zhàn)是類似看門狗定時(shí)器這樣的外設(shè)。通常情況下,看門狗定時(shí)器應(yīng)根據(jù)預(yù)定義的時(shí)間間隔提供服務(wù),以避免其激活。這樣,減緩或中止處理的電源管理技術(shù)就可能無意中導(dǎo)致應(yīng)用故障。因此,該OS應(yīng)當(dāng)使應(yīng)用在睡眠模式期間禁用此類外設(shè)。

  斷電:

  盡管空閑模式消除了有效功耗,但靜態(tài)功耗即便在電路不進(jìn)行切換的情況下也會(huì)出現(xiàn),這主要是由于逆向偏壓泄漏(reverse-bias leakage)造成的。如果系統(tǒng)包括的某個(gè)模塊不必隨時(shí)供電,那么我們就可以通過讓操作系統(tǒng)僅在需要時(shí)才為子系統(tǒng)上電,從而減少功耗。到目前為止,嵌入式系統(tǒng)開發(fā)商對(duì)最小化靜態(tài)功耗投入的工作極少,因?yàn)镃MOS電路的靜態(tài)功耗非常低。但是,新型、具有更高性能的晶體管使電流泄漏顯著增加,這就要求我們對(duì)可降低靜態(tài)功耗及更復(fù)雜的睡眠模式給予新的關(guān)注。

  電壓與頻率縮放(frequency scaling)有效功耗與切換頻率成線性比例,但與電源電壓成平方比。以較低的頻率運(yùn)行應(yīng)用與在全時(shí)鐘頻率上運(yùn)行該應(yīng)用并轉(zhuǎn)入閑置相比,談不上節(jié)約了多少功率。但是,如果頻率與平臺(tái)上可用的更低操作電壓兼容的話,那么我們就可能通過降低電壓來實(shí)現(xiàn)顯著的節(jié)約,這正是由于上述平方關(guān)系的緣故。這也使人們就如何通過電壓縮放來節(jié)約功率進(jìn)行了大量的學(xué)術(shù)研究。

  盡管電壓縮放是一種潛在的、非常誘人的、降低功耗的方法,但在現(xiàn)實(shí)世界的應(yīng)用中我們對(duì)其加以利用時(shí)應(yīng)當(dāng)小心。這是由于我們需要完全了解該系統(tǒng)是否仍能滿足它的實(shí)時(shí)最后期限。降低電壓(進(jìn)而降低CPU頻率)將改變給定任務(wù)的執(zhí)行時(shí)間,從而有可能導(dǎo)致人物錯(cuò)過實(shí)時(shí)最后期限。即便新頻率與最后期限兼容,但如果開關(guān)頻率及電壓的等待時(shí)間太長(zhǎng),還是會(huì)出現(xiàn)問題。影響等待時(shí)間的因素包括如下:

  * 對(duì)穩(wěn)壓器進(jìn)行再編程所需時(shí)間

  * DSP能否在電壓更改期間繼續(xù)執(zhí)行其他任何代碼

  需要對(duì)外設(shè)進(jìn)行再編程,如串行端口或外部存儲(chǔ)器接口,與接收不同始終來源的周邊外設(shè)相接。例如,CPU 時(shí)鐘速率降低可能要求減少訪問外部存儲(chǔ)器的等待狀態(tài)數(shù)量。

  對(duì)用于生成操作系統(tǒng)時(shí)鐘報(bào)時(shí)信號(hào)的計(jì)時(shí)器進(jìn)行再編程的可能性,將影響操作系統(tǒng)時(shí)基的絕對(duì)正確性。

  盡管電壓縮放實(shí)際等待時(shí)間會(huì)根據(jù)所選DSP以及需要再編程外設(shè)的數(shù)量而不同,但在許多系統(tǒng)中,等待時(shí)間僅為幾百微秒甚至幾毫秒。在許多實(shí)時(shí)應(yīng)用中,這將使電壓縮放不切實(shí)際。盡管存在上述弱點(diǎn),但僅在某些可事先預(yù)見的模式下,那些需要完全處理功率的應(yīng)用,還是有可能利用電壓縮放的。例如,便攜式音樂播放機(jī)可利用DSP進(jìn)行MP3譯碼及用戶接口要求的一般控制處理。如果僅MP3譯碼要求完全時(shí)鐘速率,那么DSP便可在執(zhí)行用戶接口功能時(shí)降低其電壓,而僅在音樂數(shù)據(jù)開始流向DSP時(shí)才以完全功率工作。

  在DSP RTOS中實(shí)施電源管理

  上述電源管理技術(shù)的一個(gè)子集已包括在DSP的RTOS中。為了更好地說明如何將電源管理構(gòu)建到RTOS中,我們將更詳細(xì)地對(duì)實(shí)施進(jìn)行總體討論。

  正如我們?cè)谇懊嬗懻撝锌吹降哪菢樱囟ㄏ到y(tǒng)減小功耗的方法主要取決于應(yīng)用的性質(zhì)以及DSP和周邊外設(shè)提供的選項(xiàng)。因此,關(guān)鍵的設(shè)計(jì)目標(biāo)就是高效性及靈活性。盡管下面所描述的實(shí)施是就特定RTOS而言的,但其概念可簡(jiǎn)單地運(yùn)用其它操作系統(tǒng),甚至用于無操作系統(tǒng)的應(yīng)用環(huán)境。

  電源管理器(PWRM)的要求

  首款電源管理器實(shí)施的關(guān)鍵要求如下:

  * 電源管理動(dòng)作是應(yīng)用觸發(fā)而不是操作系統(tǒng)觸發(fā)的。更改DSP操作模式或功能的主要決策由應(yīng)用作出,并由PWRM調(diào)用推動(dòng)執(zhí)行。但操作系統(tǒng)可以(也應(yīng)當(dāng))自動(dòng)采取行動(dòng)以節(jié)電,只要該行動(dòng)不影響應(yīng)用即可。例如,PWRM應(yīng)當(dāng)在CPU閑置時(shí)自動(dòng)閑置CPU時(shí)鐘。

  * 電源管理動(dòng)作由應(yīng)用的控制部分觸發(fā),但應(yīng)當(dāng)對(duì)大部分應(yīng)用代碼均為透明的。例如,具有極高價(jià)值的、優(yōu)化的DSP算法不必重寫便可在管理的電源環(huán)境中工作。

  * 電源管理器必須支持電壓與頻率(V/F)縮放,還必須充分利用芯片閑置與睡眠模式。

  * 電源管理器必須協(xié)調(diào)整個(gè)應(yīng)用過程中的電源事件處理(如應(yīng)用代碼、驅(qū)動(dòng)器以及操作系統(tǒng)本身),并在特定事件發(fā)生時(shí)向已注冊(cè)要求獲得通知的客戶發(fā)出通知。

  * 電源管理特性必須在任何線程環(huán)境中可用,還必須對(duì)特定客戶的多個(gè)實(shí)例可用(如一個(gè)編碼譯碼器驅(qū)動(dòng)器的多個(gè)實(shí)例)。

  * 在向客戶發(fā)出電源事件通知時(shí),電源管理器必須支持事件處理的延遲完成,并在等待延遲客戶的完成信號(hào)同時(shí)通知其他客戶。

  * 電源管理器必須對(duì)具有不同功能的不同平臺(tái)是可擴(kuò)展的和便攜性的。

  電源管理模塊(PWRM)

  稱作PWRM的電源管理器作為DSP/BIOS的一個(gè)附屬模塊被添加,如圖1所示。




  從概念上說,電源管理器與內(nèi)核并行;其并非系統(tǒng)中的另一項(xiàng)任務(wù),而是作為一系列在應(yīng)用控制線程以及器件驅(qū)動(dòng)器環(huán)境中執(zhí)行的API而存在的。無需進(jìn)行內(nèi)核修改便可合并到PWRM中;但在CPU時(shí)鐘與操作系統(tǒng)計(jì)時(shí)器時(shí)鐘相聯(lián)結(jié)的平臺(tái)上,DSP/BIOS時(shí)鐘模塊(CLK)要進(jìn)行補(bǔ)充例行程序,以使其根據(jù)頻率縮放事件調(diào)整操作系統(tǒng)時(shí)鐘(作為PWRM的客戶)。PWRM寫入并讀取時(shí)鐘空閑配置寄存器,并通過控制CPU時(shí)鐘速率及穩(wěn)壓電路的針對(duì)不同平臺(tái)的功率擴(kuò)展庫(kù)(PSL)直接與DSP硬件相連接。PSL將PWRM及應(yīng)用的其他部分與頻率及電壓控制硬件的低級(jí)實(shí)施細(xì)節(jié)相隔離。

  電源管理器的作用在于管理DSP/BIOS應(yīng)用中所有與電源相關(guān)的事項(xiàng),既有應(yīng)用開發(fā)人員靜態(tài)配置的,也有在運(yùn)行時(shí)動(dòng)態(tài)調(diào)用的:

  電源管理操作的靜態(tài)配置。PWRM支持DSP/BIOS配置工具為一些電源管理操作提供設(shè)計(jì)時(shí)選項(xiàng)。例如,開發(fā)人員可配置閑置功能,插入DSP/BIOS閑置環(huán)路中,以自動(dòng)閑置DSP緩存及CPU;或配置節(jié)電功能,在導(dǎo)入時(shí)自動(dòng)調(diào)用,以便閑置不必要的外設(shè)或子系統(tǒng)。

  電源管理API:

  PWRM提供了API,使開發(fā)人員能夠閑置特定的時(shí)鐘域,以調(diào)用定制睡眠模式,并動(dòng)態(tài)更改DSP CPU的操作電壓及頻率。憑借新型API系列,應(yīng)用還可指定是否應(yīng)將電壓與頻率同時(shí)縮放,是否可在電壓降低轉(zhuǎn)換過程中繼續(xù)執(zhí)行,以及V/F設(shè)置點(diǎn)屬性及等待時(shí)間的查詢。


上一頁 1 2 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉