在嵌入式無線系統(tǒng)應用中可靠性和功耗的關系及優(yōu)化方法
嵌入式無線技術(shù)是嵌入式進程或系統(tǒng)與無線通信接口的組合。方興未艾的嵌入式無線系統(tǒng),正催生出各種新型工業(yè)、商業(yè)和住宅建筑自動化應用,并且還為消費、醫(yī)療和農(nóng)業(yè)系統(tǒng)帶來了諸多具有新功能和特性豐富的產(chǎn)品。低功耗或者功率是所有這些低數(shù)據(jù)率應用的一個非常重要的需求,甚至是大多數(shù)情況下的一個主要需求。但是,衡量嵌入式無線應用的功耗并非如將各部分功耗簡單相加即可,盡管通常情況下,這是對給定應用選擇組件的典型方法。這種以可量化的標準來比較的基本方法,無法充分反映各組件在系統(tǒng)中的真實關系和工作狀態(tài)。因此,必須專注于無線系統(tǒng)的功耗,了解給定無線解決方案在節(jié)能方面的表現(xiàn)。
本文引用地址:http://2s4d.com/article/148538.htm提高可靠性有助于降低無線系統(tǒng)的功耗,但這個系統(tǒng)屬性通常會被忽視。在這里,可靠性指得是系統(tǒng)在兩點間一次性進行數(shù)據(jù)通信的能力。本文將介紹嵌入式無線應用中可靠性和功耗的關系,以及優(yōu)化可靠性和功率效率的方法。
可靠性與功耗的關系
在大多數(shù)嵌入式無線應用中,功耗最大的器件是收發(fā)器的發(fā)射電路。目前市場上可選的收發(fā)器有很多樣,單純從數(shù)據(jù)表的介紹來看,它們的額定功耗似乎都差不多,都在20~30mA的范圍內(nèi)。但是,如果單純選擇額定功耗最低的器件,更為重要的系統(tǒng)可靠性屬性則有可能被忽視。可靠性為什么重要呢?對于將每1uA或每1mA電流都要考慮在內(nèi)的低功耗應用來說,可靠性是決定該應用在高功耗的動態(tài)狀態(tài)(相對于極低功耗的睡眠狀態(tài))能保持多久的最重要因素,因為可靠性越高,功耗就越低。完美、理想的無線系統(tǒng)應盡可能快地在兩點間一次性傳輸一組數(shù)據(jù)。當然,系統(tǒng)不可能始終完美地實現(xiàn)這種工作模式,因此有可能會由于干擾或信號強度不足,無法達到遠程末端,而必須重新傳輸數(shù)據(jù)。在此情況下,必須盡可能提高無線系統(tǒng)的可靠性。
無線系統(tǒng)有具體的特征描述(參數(shù)),這有助于決定在給定系統(tǒng)中如何可靠地工作。例如,“RF頻譜應用”是指無線通信采用什么RF頻譜進行通信;“接收靈敏度”是指收發(fā)器識別出通信內(nèi)容的最低程度,以功率分貝比來計算,單位為1mW(dBm);“輸出功率”指技術(shù)通信需要多大的功率,它必須大于潛在干擾的功率,單位為dBm;“RF捷變性”指能否支持在RF頻譜中移動以避免干擾,它由RF通道大小和可用通道數(shù)量決定的;最后一個是“抗干擾性”,即RF技術(shù)能否在存在面臨干擾的情況下確保給定通道的通信,它體現(xiàn)為接收敏感度的增加,也稱作編碼增益(dBm)。
RF頻譜應用是可靠性方程中的一個變量,依賴于RF波物理特性決定的環(huán)境。頻率越低,波長越長,RF波也就越難被液體和混凝土等常見制造材料吸收。不過,RF頻譜及其應用是一個受政府高度管理的無線通信領域,原因是避免干擾其他無線通信技術(shù)。只有少部分頻段預留給在本地和國際上這些通信應用非限制地使用,也就是所謂的工業(yè)、科學和醫(yī)療(ISM)頻段。在此頻段內(nèi),常用的最主要頻率是ISM頻段的2.4GHz部分。在此頻段中,工業(yè)領域中惡劣的RF環(huán)境會很快吸收波長較短的波,因此必須更加關注其它波長的波,以測量可靠性。
可以將接收靈敏度、輸出功率和抗干擾性全部量化,以形成定義可靠性的變量,即鏈路預算。鏈路預算可定義為接收靈敏度加上輸出功率和抗干擾性的絕對值。接收靈敏度越高,輸出功率就越大,抗干擾性就越強,解決方案的鏈路預算就越高。而鏈路預算越高,無線解決方案受RF吸收和干擾影響的幾率就越低,從而有助于提高可靠性。收發(fā)器的接收靈敏度和輸出功率往往決定了鏈路預算的器件級鑒別器,我們可以方便地對其加以評估和比較。但是,抗干擾性很大程度上取決于無線收發(fā)器采用何種技術(shù)來提高其信號有效性。當前采用的可以直接改善這一功能的最佳技術(shù)之一就是直接序列擴頻(DSSS)調(diào)制技術(shù)。
DSSS調(diào)制技術(shù)是一種對發(fā)送信號進行前向糾錯的方法,用于減小信號干擾造成數(shù)據(jù)丟失的影響。具體而言,DSSS根據(jù)發(fā)射器和接收器共享的偽隨機噪聲碼,將一組數(shù)據(jù)進行編碼,輸出成較大的比特流。例如,在圖1中,8位數(shù)據(jù)編碼為32個碼片,在此情況下,4個碼片相當于1位。隨后,碼片在RF信號上調(diào)制發(fā)送。接收器將接收信號的碼片解調(diào),并反向執(zhí)行DSSS編碼方案。即便由于信號噪聲或干擾會出現(xiàn)解調(diào)錯誤,原始數(shù)據(jù)仍然可以被恢復出來。
圖1:直接序列擴頻技術(shù)。
最后,RF捷變性可通過避免干擾技術(shù)提高可靠性,也就是通過RF頻譜跳頻或者移動來避免干擾。解決方案的自由度越高,就越有利于找到RF干擾較小的環(huán)境,降低干擾。目前使用的RF捷變性技術(shù)主要分為兩大類,一類是偽隨機或算法型跳頻方案,可在頻譜內(nèi)持續(xù)跳頻,以盡量減少干擾,另一類是僅在需要時才移動的智能方案(見圖2)。從可靠性角度看,第一類捷變性方案存在的一個問題是,如果RF頻譜內(nèi)比較繁忙,那么可能會無意中跳頻到干擾較高的頻譜部分中去;而智能型技術(shù)則會找到干擾較低的位置并隨即停止移動。不管采用何種捷變性方案,RF捷變性都取決于RF頻譜的使用和通道的大小。
圖2:RF頻譜跳頻技術(shù)的示意圖。
linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂) 紅外熱像儀相關文章:紅外熱像儀原理
評論