新聞中心

EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 采用Topswitch系列芯片的單片開(kāi)關(guān)電源效率研究

采用Topswitch系列芯片的單片開(kāi)關(guān)電源效率研究

——
作者: 時(shí)間:2007-12-04 來(lái)源: 收藏

  引言

  近20多年來(lái),集成一直在沿著兩個(gè)方向不斷發(fā)展。第一是對(duì)的核心單元——控制電路實(shí)現(xiàn)集成化。第二個(gè)方向則是對(duì)中、小功率實(shí)現(xiàn)單片集成化。單片開(kāi)關(guān)電源集成電路具有高集成度、高性價(jià)比、最簡(jiǎn)單的外圍電路、最佳的性能指標(biāo)、能構(gòu)成高效率無(wú)工頻變壓器的隔離式開(kāi)關(guān)電源等優(yōu)點(diǎn)。目前已成為國(guó)際上開(kāi)發(fā)中、小功率開(kāi)關(guān)電源、精密開(kāi)關(guān)電源、特種開(kāi)關(guān)電源及電源模塊的優(yōu)選集成電路。目前,單片開(kāi)關(guān)電源已形成了幾十個(gè)系列、數(shù)百種產(chǎn)品。然而開(kāi)關(guān)效率始終是一個(gè)眾人關(guān)注的問(wèn)題。本文就此問(wèn)題提出了一點(diǎn)自己的看法。

  1 Topswitch芯片在開(kāi)關(guān)電源中的應(yīng)用

  70年代以來(lái),電源產(chǎn)品掀起了一波高頻化、小型化、模塊化的浪潮。從而有力地促進(jìn)了單片開(kāi)關(guān)電源的發(fā)展。對(duì)于200W以下的開(kāi)關(guān)電源,與其他電路相比,應(yīng)用Topswitch系列器件的電路相對(duì)簡(jiǎn)捷,體積小,重量輕,自保護(hù)功能齊全,設(shè)計(jì)方便。另外,TOPSwitch器件不必另設(shè)散熱器,也節(jié)省了成本。其內(nèi)部的控制器和MOSFET功率開(kāi)關(guān)管是在管殼內(nèi)連接的,連線極短,這就消除了高頻輻射,改善了電源的電磁兼容性能,減小了器件對(duì)電路板布局和輸入總線的瞬變要求。

  TOPSwitch-Ⅱ是TOPSwitch的改進(jìn)型號(hào),與第一代產(chǎn)品相比,該器件在性能上有了很大改進(jìn)。它將單電壓輸入時(shí)的最大功率從100W提高到150W,電磁兼容性也得到了增強(qiáng),而且具有更高的性能價(jià)格比,并使電源的體積和重量大為減小。由于它是將700 V的功率MOSFET、晶振、高壓開(kāi)關(guān)電流源、限流和熱關(guān)斷電路集成于一體,并以其突破性的設(shè)計(jì)提供了一種高效率開(kāi)關(guān)電源的設(shè)計(jì)方案,因而是具有偏置和自保護(hù)、電流線性占空比的變換器,該器件采用漏極開(kāi)路輸出。

  第三代TOPSwitch-FX系列是一種五端單片開(kāi)關(guān)電源集成電路,它采用了“跳過(guò)周期”等新技術(shù)。如果開(kāi)關(guān)電源的負(fù)載非常輕,以至于開(kāi)關(guān)電源在最小占空比(Dmin=1.5%)之下所提供的輸出功率仍然超過(guò)負(fù)載功耗時(shí),TOPSwitch—FX就采用跳過(guò)周期的工作方式來(lái)進(jìn)一步降低輸出功率,同時(shí)提高輕載時(shí)電壓的穩(wěn)定性。此方式可等效為先將占空比固定在1.5%(或更低值)上,然后用脈沖頻率調(diào)制(PFM)方式調(diào)節(jié)輕載時(shí)的U0值。這樣,根據(jù)負(fù)載的變化情況,開(kāi)關(guān)電源能在正常工作和跳過(guò)周期方式之間自動(dòng)轉(zhuǎn)換,而無(wú)須其它控制。如不需要跳過(guò)周期,可在電源輸出端接上最小負(fù)載RLmin,并使D大于Dmin為1.5%的占空比。采用跳過(guò)周期模式不僅能獲得極低的輸出功率,而且還能減小噪聲電壓。

  TOPSwitch-GX為第四代產(chǎn)品。它采用與TOPSwitch相同的拓?fù)潆娐穪?lái)將高壓功率MOS-FET、脈寬調(diào)制()控制器、故障自動(dòng)保護(hù)和其它控制電路集成到單片CMOS芯片中,并將工作頻率提高到132 kHz,同時(shí)也拓展了TOP-Switch系列的功率范圍,將單電壓輸入時(shí)的最大功率提高到250 W。此外,它還集成了多項(xiàng)新功能,因此有效地降低了系統(tǒng)成本,提高了設(shè)計(jì)的靈活性、以及功能和效能。

  2 影響單片開(kāi)關(guān)電源效率的主要因素

  TOPSwitch系列芯片作為單片開(kāi)關(guān)電源的一部分,對(duì)電源效率有著一定的影響。圖1所示是以ST204A型單片開(kāi)關(guān)電源模塊的內(nèi)部電路。實(shí)際上,圖中電源的大部分功率損耗是由TOP204Y、鉗位二極管(VDZ)、輸出整流管(VD2)、共模扼流圈(L2)、整流橋(BR)、高頻變壓器(T)及輸入電容(C1)、輸出電容(C2)等產(chǎn)生的。它們也是影響電源效率的主要因素。

  

  3 提高單片開(kāi)關(guān)電源效率的方法

  3.1 正確確定初級(jí)電路元器件

  (1)輸入整流橋(BR)的選擇

  選擇具有較大容量的整流橋并使之工作在較小的電流下,可減小整流橋的壓降和功率損耗,提高電源效率。由二極管構(gòu)成的整流橋(BR)的標(biāo)稱電源電流IN應(yīng)大于在輸入電壓為最小值(Umin)時(shí)的初級(jí)有效電流,功率因數(shù)應(yīng)取0.6~0.8之間,其具體數(shù)值取決于輸入電壓u和輸入阻抗。

  (2)鉗位二級(jí)管(VDZ)的選擇

  鉗位電路主要用來(lái)限制高頻變壓器漏感所產(chǎn)生的尖峰電壓并減小漏極產(chǎn)生的振鈴電壓。在圖1所示的單片開(kāi)關(guān)電源模塊電路中,輸入鉗位保護(hù)電路由VDZ和VD1構(gòu)成。為降低其損耗,VDZ可選用P6KE200型瞬變電壓抑制二極管;VD1則選用BYV 26C型快恢復(fù)二極管。

  (3)輸入濾波電容(C1)

  輸入濾波電容C1用于濾除輸入端引入的高頻干擾,C1的選擇主要是正確估算其電容量。通常輸入電壓U1增加時(shí),每瓦輸出功率所對(duì)應(yīng)的電容量可減小。

  (4)交流輸入端電磁干擾濾波器(EMI)

  圖1中的和C6用于構(gòu)成交流輸入端的電磁干擾濾波器(EMI)。C6能濾除輸入端脈動(dòng)電壓所產(chǎn)生的串模干擾,L2則可抑制初級(jí)線圈中的共模干擾。

  (5)限流保護(hù)電路

  為限制通電瞬間的尖峰電流,可在輸入端接入具有負(fù)溫度系數(shù)的熱敏電阻(NTC)。選擇該電阻時(shí)應(yīng)使之工作在熱狀態(tài)(即低阻態(tài)),以減小電源電路中的熱損耗

  (6)輸出整流管(VD2)

  正確選擇輸出整流管VD2可以降低電路損耗,提高電源效率。其方法一是選用肖特基整流管,原因是其正向傳輸損耗低,且不存在快恢復(fù)整流管的反向恢復(fù)損耗;二是將開(kāi)關(guān)電源設(shè)計(jì)成連續(xù)工作模式,以減小次級(jí)的有效值電流和峰值電流。輸出整流管的標(biāo)稱電流應(yīng)為輸出直流電流額定值的3倍以上。

  (7)輸出濾波電容(C2)

  電源工作時(shí),輸出濾波電容(C2)上的脈動(dòng)電流通常很大。一般在固定負(fù)載情況下,通過(guò)C2的交流標(biāo)稱值IC2曉必須滿足下列條件:

  IC2=(1.5~2) IR1

  式中,IR1是輸出濾波電容C2上的脈動(dòng)電流。

  設(shè)輸出端負(fù)載為純電阻性R1,那么,R1C2愈大,則C2放電愈慢,輸出波形愈平坦。也就是說(shuō),在R1一定的情況下,C2愈大,輸出直流電壓愈平滑。

  3.2 確保高頻變壓器的質(zhì)量

  設(shè)計(jì)時(shí)應(yīng)確保高頻變壓器有合理的結(jié)構(gòu),同時(shí)應(yīng)保證其具有較低的直流損耗和交流損耗且漏感小,線圈本身的分布電容及各線圈之間的耦合電容也要足夠小。為達(dá)到上述目標(biāo),最主要的是要正確確定磁芯的形狀、尺寸、磁芯材料以及線圈的繞制方法等。

  (1)降低高頻變壓器的直流損耗

  交流損耗是由高頻電流的趨膚效應(yīng)以及磁芯損耗引起的。趨膚效應(yīng)會(huì)使導(dǎo)線的有效流通面積減小,并使導(dǎo)線的交流等效阻抗遠(yuǎn)高于銅電阻。由于高頻電流對(duì)導(dǎo)線的穿透能力與開(kāi)關(guān)頻率的平方根成反比。為了減小交流銅損耗,其導(dǎo)線半徑不得超過(guò)高頻電流可達(dá)深度的兩倍。事實(shí)上,在根據(jù)開(kāi)關(guān)頻率確定導(dǎo)線直徑φ后,實(shí)際制作時(shí)應(yīng)用比φ更細(xì)的導(dǎo)線多股并繞而不是用一根粗導(dǎo)線繞制。

  (2)減小漏感

  因?yàn)槁└杏?,產(chǎn)生的尖峰電壓幅度愈高;而初級(jí)尖峰電壓幅度愈高,初級(jí)鉗位電路的損耗就愈大,從而將導(dǎo)致電源效率降低。所以,在設(shè)計(jì)高頻變壓器時(shí),必須把漏感減至最小。對(duì)于低損耗的高頻變壓器,其漏感量應(yīng)是開(kāi)路時(shí)初級(jí)電感量的減小漏感的措施有減小初級(jí)線圈的匝數(shù)、增大線圈的寬度、增加線圈尺寸的高度與寬度之比、減小線圈之間的絕緣層以及增加線圈之間的耦合程度等。

  (3)減小線圈的分布電容

  在開(kāi)關(guān)電源的每個(gè)通、斷轉(zhuǎn)換期間,線圈分布電容將反復(fù)充、放電,這樣,其上的能量被吸收將使電源效率降低。此外,分布電容與線圈的分布電感也會(huì)構(gòu)成LC振蕩回路,并產(chǎn)生振蕩噪聲。對(duì)于初級(jí)線圈的分布影響,可以采取如下措施來(lái)減小線圈的分布電容:一是盡量減小每匝導(dǎo)線的長(zhǎng)度;二是將初級(jí)線圈的始端接漏極;三是在初級(jí)線圈之間加絕緣層。

  4 結(jié)束語(yǔ)

  本文通過(guò)分析單片開(kāi)關(guān)電源的工作原理和影響其效率的主要因素,提出了提高單片開(kāi)關(guān)電源效率的主要方法,指出了正確確定初、次級(jí)電路元件,正確設(shè)計(jì)高頻變壓器并使其具有高質(zhì)量指標(biāo)是其關(guān)鍵因素。本文的分析及結(jié)論可用于指導(dǎo)高效單片開(kāi)關(guān)源的設(shè)計(jì)。



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉