用Multisim分析二階低通濾波器電路
1 引 言
本文引用地址:http://2s4d.com/article/270617.htmMultisim是加拿大Interactive Image Technologies公司近年推出的電子線路仿真軟件EWB(Electronics Workbench,虛擬電子工作平臺(tái))的升級(jí)版。Multisim為用戶提供了一個(gè)集成一體化的設(shè)計(jì)實(shí)驗(yàn)環(huán)境。利用Multisim,建立電路、仿真分析和結(jié)果輸出在一個(gè)集成菜單中可以全部完成。其仿真手段切合實(shí)際,元器件和儀器與實(shí)際情況非常接近。Multisim元件庫中不僅有數(shù)千種電路元器件可供選用,而且與目前較常用的電路分析軟件PSpice提供的元器件完全兼容。Multisim提供了豐富的分析功能,其中包括電路的瞬態(tài)分析、穩(wěn)態(tài)分析、時(shí)域分析、頻域分析、噪聲分析、失真分析和離散傅里葉分析等多種工具。本文以Multisim為工作平臺(tái);深入分析了二階低通濾波器電路。利用Multisim可以實(shí)現(xiàn)從原理圖到PCB布線工具包(如Electronics Workbench的Ultiboard)的無縫隙數(shù)據(jù)傳輸,且界面直觀,操作方便。
2 電路設(shè)計(jì)
由于一階低通濾波器的幅頻特性下降速率只有-20 dB/10 f,與理想情況相差太大,其濾波效果不佳。為了加快下降速率,使其更接近理想狀態(tài),提高濾波效果,我們經(jīng)常使用二階RC有源濾波器。采取的改進(jìn)措施是在一階的基礎(chǔ)上再增加一節(jié)RC網(wǎng)絡(luò)。
電路結(jié)構(gòu)如圖1所示,此電路上半部分是一個(gè)同相比例放大電路,由兩個(gè)電阻R1,Rf和一個(gè)理想運(yùn)算放大器構(gòu)成。R1與Rf均為16 kΩ。下半部分是一個(gè)二階RC濾波電路,由兩個(gè)電阻R2,R3及兩個(gè)電容C1,C2構(gòu)成。其中R2,R3均為4 kΩ,C1,C2均為0.1μF。電路由一個(gè)幅度為1 mV,頻率可調(diào)的交流電壓源提供輸入信號(hào),用一個(gè)阻值為1 kΩ的電阻作為負(fù)載。
3 理論分析
3.1 頻率特性
二階低通濾波器電路的頻率特性為:
3.2 通帶電壓放大倍數(shù)AUP
低頻下,兩個(gè)電容相當(dāng)于開路,此電路為同相比例器。
3.3 特征頻率f0與通頻帶截止頻率fP
4 Multisim分析
4.1 虛擬示波器分析
在Multisim軟件的虛擬儀器欄中選擇虛擬雙蹤示波器,將示波器的A、B端分別連接到電路的輸入端與輸出端(即圖1中的1、3節(jié)點(diǎn)),再點(diǎn)擊仿真按鈕進(jìn)行仿真,得到如下波形。
圖2為輸入信號(hào)頻率為1 kHz,幅度為1 mV時(shí)二階低通濾波器電路的輸入輸出情況。圖中橫坐標(biāo)為時(shí)間,縱坐標(biāo)為電壓幅度。我們選擇示波器掃描頻率為1 ms/div。縱軸每格均代表1 mV,輸出方式為Y/T方式。幅度大的為輸入信號(hào),幅度小的為輸出信號(hào)。
很顯然,輸出信號(hào)的頻率與輸入信號(hào)一致,說明二階低通濾波器電路不會(huì)改變信號(hào)頻率。從圖2還可以看出,在輸入信號(hào)頻率較大(如1 kHz)時(shí)輸出信號(hào)的幅度明顯小于輸入信號(hào)的幅度。而低頻情況下的理論計(jì)算結(jié)果AUP=2;即在低頻情況下輸出信號(hào)的幅度應(yīng)為輸人信號(hào)的兩倍。很顯然,輸入信號(hào)頻率較大時(shí)電路的放大作用已經(jīng)不理想。
調(diào)節(jié)輸入頻率,使之分別為800 Hz,600 Hz,400 Hz,300 Hz,200 Hz,150 Hz,1 Hz。由虛擬示波器得到輸入頻率為1 Hz時(shí)的輸出電壓Uo1=2 mV,即AUP=2,與理論計(jì)算值相吻合。而輸入頻率為150 Hz時(shí)Uo2=1.5 mV。此時(shí)Uo2最接近截止時(shí)的輸出電壓UP=0.707Uo1=1.414 mV。這說明截止頻率fP接近150 Hz。
我們發(fā)現(xiàn),僅通過虛擬示波器分析,既很難得出fP的準(zhǔn)確值,也不能直觀看出輸入信號(hào)的頻率對(duì)電路放大性能的影響,于是用Multisim中的交流分析來精確觀察電路的輸入輸出特性。
4.2 交流分析(AC Analysis)
停止Multisim仿真分析(Multisim仿真分析與交流分析不能同時(shí)進(jìn)行),在主菜單欄中simulate項(xiàng)中選擇Analysis中的AC Analysis。參數(shù)設(shè)置如下:起始頻率為1 Hz,終止頻率為10 MHz,掃描方式使用十進(jìn)制,縱坐標(biāo)以dB為刻度,在Output variables中選擇輸出節(jié)點(diǎn)(即圖1中節(jié)點(diǎn)3),然后點(diǎn)擊simulate進(jìn)行仿真分析,得到電路的幅頻特性曲線如圖3所示。
4.2.1 通帶電壓放大倍數(shù)AUP的測量
從特性曲線可以看出,在低頻狀態(tài)下頻率變化對(duì)AUP的影響不大,頻率較大時(shí)AUP隨頻率增加而急劇減小。高頻狀態(tài)下輸出電壓則接近于0。從對(duì)話框中可知縱坐標(biāo)最大值為6.020 4 dB,即AUP=2,與理論計(jì)算值相符。
4.2.2 通頻帶截止頻率fP的測量
fP為縱坐標(biāo)從最大值(6.020 4 dB)下降3 dB時(shí)所對(duì)應(yīng)的頻率,即縱坐標(biāo)為3.020 4 dB所對(duì)應(yīng)的頻率。將圖3中右側(cè)標(biāo)尺移至3.020 4 dB附近,選其局部進(jìn)行放大;再將該標(biāo)尺精確移至縱坐標(biāo)為3.020 4 dB處,得到的橫坐標(biāo)為148.495 2 Hz,即fP=148.495 2 Hz。這與理論計(jì)算得到的基本一致。
4.3 參數(shù)掃描分析(parameter sweep)
當(dāng)某元件的參數(shù)變化時(shí),利用Multisim中的參數(shù)掃描分析功能可以得到電路輸入輸出特性的變化情況。
在主菜單欄中simulate項(xiàng)中選擇Analysis中的parameter sweep。參數(shù)設(shè)置如下(以分析C1為例):設(shè)備項(xiàng)中選擇電容設(shè)備,元件名選擇C1,參數(shù)選擇電容量,電容量使用le-006F,le-007F,le-008F三個(gè)值。點(diǎn)擊more選項(xiàng),選擇AC Analysis(交流分析),再選擇節(jié)點(diǎn)3作為輸出節(jié)點(diǎn)。點(diǎn)擊simulate進(jìn)行仿真,得到C1取上述三個(gè)不同值時(shí)電路的幅頻特性曲線(如圖4所示)。
圖4中,三條曲線由下至上對(duì)應(yīng)的電容分別為le-006F、le-007F、le-008F,對(duì)應(yīng)的截止頻率分別為35.550 Hz,148.493 7 Hz,193.375 6 Hz。很顯然,C1減小引起電路的截止頻率增大,通頻帶變寬。而C1的變化對(duì)電壓增益基本無影響。
采用類似方法,我們得到C2,R1,R2,R3和Rf對(duì)電路性能的影響如下:C2,R2和R3的變小均會(huì)引起電路的截止頻率增大和通頻帶變寬。而C2,R2和R3的變化對(duì)電壓增益的影響不大。R1與輸出電壓幅度成反比,Rf與輸出電壓幅度成正比,但R1和Rf的變化不影響電路的頻率特性。
5 結(jié)語
由以上分析可知,Multisim中的仿真分析結(jié)果與理論計(jì)算結(jié)果十分接近。Multisim既是一個(gè)專門用于電子電路設(shè)計(jì)與仿真的軟件,又是一個(gè)非常優(yōu)秀的電子技術(shù)教學(xué)工具。Multisim應(yīng)用于課堂教學(xué),豐富了電子技術(shù)多媒體輔助教學(xué)的內(nèi)容,是教育技術(shù)發(fā)展的一個(gè)飛躍。Multisim以其具有的開發(fā)性、靈活性、豐富性、生動(dòng)性、實(shí)時(shí)交互性和高效性等功能特征,極大地豐富了電子電路的教學(xué)方法,拓展了教學(xué)內(nèi)容的廣度和深度,為提高電子技術(shù)教學(xué)質(zhì)量提供了又一個(gè)有效手段。
電路相關(guān)文章:電路分析基礎(chǔ)
濾波器相關(guān)文章:濾波器原理
濾波器相關(guān)文章:濾波器原理
低通濾波器相關(guān)文章:低通濾波器原理
電源濾波器相關(guān)文章:電源濾波器原理
數(shù)字濾波器相關(guān)文章:數(shù)字濾波器原理
評(píng)論