基于FPGA的高光效LCD投影機設計
引言
本文引用地址:http://2s4d.com/article/266855.htm顯示技術正朝著大屏幕、高清晰度、高亮度和高分辨率的方向發(fā)展。通常說來,將屏幕顯示面對角線尺寸在1米(40英寸)以上的顯示稱為大屏幕顯示。投影機作為一種重要的顯示設備,已經(jīng)廣泛地應用到了金融、教育、企業(yè)、軍事等多個領域,它所具有的大幅面、高清晰多媒體演示功能,使信息的傳遞具有更好的效果。目前,市面上的主流產(chǎn)品是三片式LCD投影機和DLP投影機,其中,三片式LCD投影機的市場份額高達三分之二。
然而,投影機的主要采購者絕大多數(shù)是政府部門、企業(yè)和高校。無論是三片式LCD投影機還是DLP投影機,其高昂的價格一直妨礙著投影機進入普通家庭。為了簡化設備結構,降低成本,本文給出了一種基于FPGA的高光效單片彩色LCD投影機的設計方法。
1 投影原理
三片式LCD投影機的一般電路原理如圖1所示。由圖1可以看出,傳統(tǒng)LCD投影機的電路原理是把傳送過來的視頻信號通過彩色解碼,以產(chǎn)生R、G、B信號,然后通過視頻處理電路把該三基色信號加載在紅、綠、藍三只單色液晶屏上,最后加在三只單色投影管上,并經(jīng)三只單色投影管還原后,再把圖像通過光學透鏡放大幾十倍后由反射鏡反射到屏幕上,最后在屏幕上合成出彩色圖像。由此可以看出,由于三只投影管和投影鏡頭并非都正對屏幕放置,三種圖像信號還原到屏幕上所經(jīng)過的光路各不相同,而這必然導致R、G、B三色信號在屏幕上不能完全重合在一起,進而引起會聚失真。
于是,本文從圖1的視頻處理電路和控制電路著手,設計了一種新的投影方式,即在一個液晶屏上呈現(xiàn)R、G、B三基色的單色圖像數(shù)據(jù),并對照射進來的R、G、B三單色光進行調制,然后經(jīng)過透射、折射以及圖像拉寬等光學系統(tǒng)的處理,最終在屏幕上形成彩色網(wǎng)像,該方法的原理圖如圖2所示。
通過圖2可以看出,該沒計的最大特點是在一塊LCD屏上分別顯示出R、G、B三基色圖像,并通過對單色光進行調制來投影,而不像傳統(tǒng)的投影系統(tǒng),要用三塊LCD屏分別顯示R、G、B基色圖像。
2 投影機系統(tǒng)電路
在投影機設計中,控制電路的作用是對輸入的視頻和數(shù)字圖像信號進行處理,以將其轉變成適合LCD屏顯示的信號。投影系統(tǒng)的電路部分如圖3所示。當圖像信號由DVI接口傳送到DVI解碼芯片后,系統(tǒng)可將視頻信號分解成24位R、G、B單色信號以及相應的控制信號,再通過FPGA組成的視頻信號處理電路進行相關轉換,然后經(jīng)過DVI編碼芯片恢復成DVI信號,最后送至液晶屏。
從系統(tǒng)電路的示意圖可知。以FPGA為核心(包括DVI解碼、編碼芯片在內(nèi))的信號處理電路是整個設計中最為關鍵的部分,圖4所示是其數(shù)據(jù)讀寫和傳輸示意圖。從DVI解碼芯片進入FPGA的數(shù)據(jù)包括8位并行R/G/B信號以及行、場控制信號和時鐘信號。事實上,為實現(xiàn)實時視頻顯示,應該對一幀(筆者使用的LCD屏所支持的最高分辨率為XGA,即1024×768)數(shù)據(jù)進行處理??墒?,如果對整幀數(shù)據(jù)一起處理,至少需要2 MB以上的外部存貯器來對數(shù)據(jù)進行緩存,這樣既提高了成本,又增加了電路的復雜性。因此,在本設計中,筆者采用了一種新思路,即對輸入的視頻數(shù)據(jù)一行一行的進行處理,并且在相鄰兩行的數(shù)據(jù)流處理中采用“乒乓操作”,這樣既可實現(xiàn)實時顯示,又簡化了電路。具體操作如下:
?、?通過模塊調用將FPGA的片內(nèi)RAM分為“RAM_A”和“RAM_B”;
?、?在第一個行周期,將輸入的第一行數(shù)據(jù)流緩存到“RAM_A”:因為一行視頻信號有3K字節(jié),為了實現(xiàn)在LCD屏上三基色的分離,在對數(shù)據(jù)進行存儲時,不能按照數(shù)據(jù)進入FPGA的順序來存儲,而應將紅色數(shù)據(jù)依次存放在第1至第1024個存儲單元,綠色數(shù)據(jù)存放在第1025至第2048個存儲單元,藍色數(shù)據(jù)則放在第2049至第3072個存儲單元,即將原來的象素“打亂”存放;
?、?在第二個行周期,按照步驟②中所描述的方法將第二行的視頻信號存入“RAM_B”,同時將“RAM_A”中所存的第一行視頻信號依次從I/O口讀出,再經(jīng)DVI編碼芯片編碼后送至LCD屏,即在讀出數(shù)據(jù)時“按序”讀取;
④ 重復步驟②、③,使讀、寫操作交替在“RAM_A”和“RAM_B”間循環(huán)進行,直至一幀數(shù)據(jù)傳輸完畢。
此時,LCD屏上顯示數(shù)據(jù)的具體算法如圖5所示,即R1,2占據(jù)G1,1的位置(即第2個單元),R1,3占據(jù)B1,1的位置(即第3個單元),R1,4占據(jù)第4個單元,以此類推,直至1024個紅色數(shù)據(jù)在LCD屏上排列完畢,再開始綠色數(shù)據(jù),繼而是藍色數(shù)據(jù)。這樣便可達到圖2中在一塊LCD屏上分別顯示R、G、B圖像的目的。
本設計中所采用的FPGA是Altera公司CvclONe系列中的EP1C6Q240C8。該FPGA的片內(nèi)存儲器容量為90kbits,完全能夠勝任對分辨率為XGA顯示模式的視頻信號進行行處理。如果要支持更高分辨率的投影模式或對圖像進行整幀的處理,只需更換具有更大片內(nèi)RAM資源的FPGA或是在FPGA的I/O口外接片外存儲器。DVI解碼和編碼芯片分別選用Sil161和Sil164。
這種基于FPGA的控制器除可用投影機的視頻信號處理外,還可應用于平板顯示中有關圖像的翻轉、截取以及象素的抽取等。其操作的關鍵是對數(shù)據(jù)讀、寫地址的控制。
3 液晶屏的處理和光學調整
現(xiàn)在市面上的TFT液晶板都是有濾色膜的。本設計如果直接使用這種液晶板,那么當R、G、B三單色光分別照射到R、G、B圖像區(qū)域的時候,濾色膜會吸收掉很大一部分光能,從而從投影亮度過低,無法達到應用要求。因此,本設計中所采用的液晶板需去掉濾色膜或者沒有濾色膜的產(chǎn)品,以提高光源利用率和投影亮度。
由于視頻信號在LCD屏上分為R、G、B三個部分,因此,三基色圖像通過液晶板匯聚以后,會形成一幅高度和原圖像相等。寬度壓縮為原圖像三分之一的彩色圖像。這時,只需要一枚寬銀幕鏡頭即可將該壓縮圖像拉寬,從而使其恢復到正常圖像。
4 結束語
隨著家庭影院概念的普及,約來越多的消費者希望在家中享受大制作影片所帶來的強烈震撼。然而,昂貴的投影機卻讓很多家庭望而卻步。本文從實際應用出發(fā),設計了一種基于FPGA的高光效單片彩色LCD投影方式。不難看出,該投影系統(tǒng)將具有如下優(yōu)勢:
(1) 一旦產(chǎn)業(yè)化,這種新型投影機的成本比其它的LCD投影機要低很多,因而易于進入普通家庭;
(2) 集成度高,體積小,信息容量大,速度快;
(3) 光利用率顯著提高,從而提高了顯示質量。
LCD顯示屏相關文章:lcd顯示屏原理
fpga相關文章:fpga是什么
led顯示器相關文章:led顯示器原理
lcd相關文章:lcd原理 透射電鏡相關文章:透射電鏡原理 全息投影相關文章:全息投影原理
評論