新聞中心

EEPW首頁 > 設(shè)計應用 > UHF頻段智能型RFID讀寫器的研究與應用

UHF頻段智能型RFID讀寫器的研究與應用

作者: 時間:2010-06-17 來源:網(wǎng)絡 收藏

隨著UHF頻段中國標準的逐漸明朗化以及物流、智能交通、數(shù)字景區(qū)等應用的需求,UHF頻段RFID產(chǎn)品在RFID產(chǎn)業(yè)中所占市場份額會越來越大。開發(fā)出 具有數(shù)據(jù)糾錯、去冗、存儲和轉(zhuǎn)發(fā),以及時間管理功能的智能型讀寫器產(chǎn)品系列將是產(chǎn)品發(fā)展的方向。

1 硬件系統(tǒng)設(shè)計

讀 寫器的硬件設(shè)計主要包括:射頻控制模塊(硬件和固件結(jié)合的固件處理器)、Intel R1000內(nèi)部集成的射頻收發(fā)模塊、功率放大PA模塊,以及外部通信控制和存儲模塊。其中,射頻控制模塊采用Atmel公司的AT91SAM9263芯 片,主要完成固件控制及智能空中接口協(xié)議、RFID控制邏輯和主機命令解碼的控制,其與主機間的通信通過USB接口來完成;射頻收發(fā)模塊包括RF多路復用 電路、高頻開關(guān)、循環(huán)器和耦合器電路;外部通信控制和存儲模塊主要完成上位機與控制芯片間的通信、調(diào)試,以及對固件的控制。

讀寫器的收發(fā) 采用2路獨立的通道,分別由發(fā)送天線和接收天線及其相關(guān)的濾波等電路組成。每組天線系統(tǒng)通過高頻開關(guān)外接4組天線,4組發(fā)送和接收天線可以通過 AT91SAM9263來選擇。發(fā)送和接收分開的方式可以有效地提高RFID系統(tǒng)的整體性能,降低接收和發(fā)送系統(tǒng)間的干擾,在實際設(shè)計中也可以通過外部電 路的改動采用單天線設(shè)計。

本設(shè)計中采用4組天線,在特殊場合下可以有效地擴大電子標簽TAG的接收空間和范圍。

硬件結(jié)構(gòu) 框圖如圖1所示。UHF頻段的RFID系統(tǒng)可分為射頻電路和基帶電路兩部分。射頻電路部分是標簽和讀寫器之間的高頻接口,用于完成高頻信號的調(diào)制/解調(diào)、 發(fā)射/接收?;鶐щ娐凡糠种饕獙崿F(xiàn)射頻系統(tǒng)控制、高頻信號的編解碼等功能,同時完成UHF RFID讀寫器與外部設(shè)備或者Host主機之間的通信接口的任務。基帶電路部分是整個讀寫器平臺的核心控制部分,支撐著整個RFID讀寫器系統(tǒng)的各項工 作,以完成射頻模塊的控制和通信。



在讀寫器的設(shè)計中,為了能夠?qū)φ麄€系統(tǒng)進行更好的檢測,實時地了解系統(tǒng)的運行情 況,特意在設(shè)計中增加了系統(tǒng)檢測部分。R1000芯片集成有A/D模塊,但是其精度轉(zhuǎn)換速率達不到設(shè)計的要求,所以在設(shè)計中采用了外部A/D轉(zhuǎn)換器來完成 對檢測信號的轉(zhuǎn)換,然后將轉(zhuǎn)換信號傳送給ARM完成系統(tǒng)的狀態(tài)監(jiān)控。

為了使設(shè)備可以組網(wǎng)以及遠距離讀寫和傳輸數(shù)據(jù),設(shè)計中采用了 以太網(wǎng)設(shè)計,從而使讀寫器可以在更大的距離空間上對標簽讀寫,并完成大規(guī)模組網(wǎng)。

Host主機作為整個系統(tǒng)的主控核心負責傳輸控 制,ARM的組網(wǎng)數(shù)據(jù)傳輸操作也受控于Host主機。USB接口不僅用作數(shù)據(jù)傳輸,而且還用來完成PC機和讀寫器之間的對話。通過設(shè)計在PC端的 控制軟件,可以實時地給讀寫器發(fā)送控制信號(如系統(tǒng)復位、工作使能、標簽讀寫、數(shù)據(jù)傳輸、功率控制等);同時,讀寫器將向Host主機反饋相應的狀態(tài)信號 (如天線開關(guān)狀態(tài)、功率信號等),從而配合上層軟件來控制系統(tǒng)的工作過程。最后,通過JTAG接口來完成對讀寫器工作狀態(tài)的實時監(jiān)測和調(diào)試,從而準確無誤 地驗證在整個讀寫器工作過程中,標簽讀寫和數(shù)據(jù)處理的正確性和可靠性是否滿足設(shè)計要求。

在設(shè)計中,R1000射頻芯片不但集成了大量的射 頻元件,而且在內(nèi)部集成了溫度檢測和功率檢測功能,在內(nèi)部各個關(guān)鍵的核心射頻電路有外接的檢測輸出引腳,從而使板卡的運行狀況和功率檢測實現(xiàn)了實時的檢測 和控制,能夠保證系統(tǒng)的良好運行。

2 外部PA電路設(shè)計

2.1總體設(shè)計

在采用內(nèi)部 PA(Power Amplifier,功率放大器)時,RFID讀寫器的作用距離十分有限(2 m),這在很大程度上限制了RFID超高頻讀寫器的應用。本設(shè)計中在輸出功率需求下,R1000的片上PA作為外部功率放大的一個驅(qū)動,通過外部PA子板 來完成信號功率放大,然后連接至主板。其中,Balun為平衡轉(zhuǎn)換器。

Intel R1000的內(nèi)部PA輸出經(jīng)過一個偏置匹配網(wǎng)絡連接到一個SMA(Sub-Miniature-A)連接器上,然后通過SMA輸出到PA子板作為其外部 PA驅(qū)動,其連接如圖2所示。



在設(shè)計中主板和PA子板之間通過同軸線纜來連接。如果要對R1000的輸出進行測 試,可以將同軸線纜斷開,通過SMA接口用儀器進行測試。其電路設(shè)計框圖如圖3所示。

本文引用地址:http://2s4d.com/article/260982.htm

R1000內(nèi)部PA的輸出信號在經(jīng)過PA驅(qū)動后,再經(jīng)過一個3 dB的正交混頻耦合芯片XC0900E-03S將信號轉(zhuǎn)換為2個正交90°的信號,然后輸出到2個平行的集成功率放大芯片MAAP- 007649-000100。此放大信號經(jīng)過一個諧波抑制的低通濾波器(LPF)后,通過同軸線纜輸出到主板上的定向耦合器,然后經(jīng)過輸出通道輸出。經(jīng)過 PA子板的放大后,可以在900~930 MHz(美國)和865~868 MHz(歐洲)頻段輸出+34 dB的輸出功率。其全部增益通過多級放大電路來實現(xiàn)。

PA子板采用了獨立電源供電的方式,可以保證功率放大電路對穩(wěn)定電源的需求,輸入電 壓為7.5 V,采用外部線性DC適配器輸入。其工業(yè)工作溫度范圍為-20~+75℃。輸入PA子板的信號為R1000射頻芯片輸出的最大+10 dB調(diào)制信號。在PA子板中PA具有固定增益,因為R1000支持變換增益范圍,其可輸入PA子板的信號范圍為-6~+10 dB,PA的變化增益范圍大概是15~30 dB,可以支持在TX通道上16 dB的變化增益,變換間隔為0.5 dB。

2.2外部 PA中衰減帶通濾波器設(shè)計

衰減帶通濾波器功能電路的原理圖如圖4所示。其中,NR為留的測試點。具體的參數(shù)設(shè)置如圖5所示。我們設(shè)計的超 高頻使用頻率范圍是860~960 MHz,在外部PA設(shè)計中,通過Multisim軟件對PA中帶通濾波器進行仿真,來測試讀寫器的使用頻率范圍。圖6是仿真結(jié)果。



PA最大的線性功率輸出大丁或等于34 dB,考慮到大約3 dB的多路損耗和濾波損耗以及1 dB的線纜和開關(guān)損耗,天線端口的輸出功率大約有+30 dB。PA板卡的噪聲干擾可以控制在6 dB以內(nèi),整個PA系統(tǒng)的輸入輸出阻抗為50 Ω。在設(shè)計中要特別注意PA的散熱設(shè)計,可以通過溫度感應調(diào)整PA的方式來補充直接的散熱設(shè)計,從而更為有效地控制功率和優(yōu)化散熱設(shè)計。通過電源控制電路 可以在需要時關(guān)閉PA,降低整個板卡的功耗。

結(jié) 語

本文以設(shè)計一種為目的,設(shè)計 了基于射頻芯片Intel R1000和AT91SAM9263的讀寫器系統(tǒng),增加了外部PA設(shè)計,從而大大增加了讀寫器的讀寫距離。本文所研究的讀寫器基帶系統(tǒng)和射頻系 統(tǒng),對RFID讀寫系列產(chǎn)品的設(shè)計具有一定的借鑒意義。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉