基于FSL總線的門光子計數(shù)器設計與實現(xiàn)
光學領域尤其是量子光學領域的實驗常常需要進行單個相干光子的探測用于實現(xiàn)實驗數(shù)據(jù)的采集。一般常用的配置是一個單光子探測器加上一個門光子計數(shù)器,其前端的單光子探測器用來收集光子信號,每探測到一個光子產生一個TTL脈沖,后端的門光子計數(shù)器用來記錄該TTL上升沿數(shù)目并且與PC等其他器件通信或者同步。APD的工作方式相對簡單,而門光子計數(shù)器則由于具體實驗需求不同而要求不同的工作方式,很難有一種通用的計數(shù)模式能夠滿足各種情況的需求。由于成本限制,功能固定的計數(shù)器往往因為沒有廣闊的市場而造成價格很高。另一方面,工業(yè)和科研界購買的商用計數(shù)器往往無法滿足自己的具體需求而導致工作效率低下,甚至無法滿足要求。
所謂門光子計數(shù)器就是針對單自旋量子調控實驗研究中對單個光子探測的需求所研制的。單自旋量子調控是對晶體中的缺陷,如量子點和金剛石色心進行控制,其信號讀出一般是通過自旋發(fā)生的單個光子進行探測實現(xiàn)的。在此類實驗中常用的技術有三種:門光子計數(shù)、定時計數(shù)和相關函數(shù)測量。文中所述的系統(tǒng)建立了一種可擴展的通信和控制架構能夠添加不同方式的計數(shù)功能。
1 系統(tǒng)結構設計
整體系統(tǒng)結構示意圖如圖1所示,通過PC機的以太網(wǎng)口實現(xiàn)與計數(shù)系統(tǒng)的數(shù)據(jù)通訊與命令傳輸,PC機將工作模式選擇等命令通過網(wǎng)口向系統(tǒng)發(fā)送,而系統(tǒng)將在不同模式下的計數(shù)值及計數(shù)狀態(tài)等數(shù)據(jù)通過網(wǎng)口發(fā)送到PC機,交由PC機對數(shù)據(jù)進行處理。系統(tǒng)的主芯片采用Xilinx的SPARTAN 3E系列的XC3S500E。系統(tǒng)的光子計數(shù)輸入由兩個BNC接口引入,這兩個接口可以由FPGA進行配置,使光子計數(shù)器以不同的模式進行工作。系統(tǒng)的固件燒寫在FLASH芯片內,SDRAM提供了大容量存儲空間,用于運行時裝載Microblaze軟核代碼、計數(shù)應用代碼以及存儲計數(shù)的數(shù)據(jù)。
系統(tǒng)以FPGA為處理中心,實現(xiàn)各種工作模式,其功能框圖如圖2所示。功能模塊主要包括軟核Microblaze、對外部存儲器的接口MPMC、以及需要設計實現(xiàn)的Counterpulse IP核。在Counterpulse IP核與處理器軟核之間,采用了FSL總線進行連接,實現(xiàn)由Microbalze對Counterpu-lse核的配置,以及由Counterpulse核到Microblaze的數(shù)據(jù)傳輸。
系統(tǒng)工作時,由Microblaze軟核通過網(wǎng)口接收由PC機發(fā)送來的命令,根據(jù)命令,通過一路FSL總線對光子計數(shù)IP核進行工作模式的選擇和配置。計數(shù)IP核對外部計數(shù)源進行計數(shù),計數(shù)的結果和狀態(tài)數(shù)據(jù)通過另一路FSL總線發(fā)送到Microblaze軟核,由Microblaze軟核將該數(shù)據(jù)在DDRRAM內進行緩沖,并通過網(wǎng)口將這些數(shù)據(jù)最終發(fā)送給PC機,由PC機進行分析處理。
系統(tǒng)有三種工作模式:模式一:使能計數(shù),使能信號有效時(高電平有效),對光子計數(shù)輸入的計數(shù)脈沖信號進行計數(shù);模式二:定周期計數(shù),根據(jù)設定的計數(shù)周期,對光子計數(shù)輸入的計數(shù)脈沖信號進行計數(shù);模式三:啟動和停止信號分開的計時,根據(jù)輸入的計數(shù)啟動信號和計數(shù)停止信號(均為上升沿有效),進行以系統(tǒng)基頻為基準的計時,以實現(xiàn)函數(shù)測量。
評論