新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 快速公交專用車道檢測

快速公交專用車道檢測

作者: 時間:2012-12-08 來源:網(wǎng)絡(luò) 收藏

3.4 車道線跟蹤

跟蹤分為消失點的跟蹤和車道線的跟蹤。

(1) 消失點的跟蹤: 消失點一般較遠, 車輛在行進過程中消失點范圍變化不是很大,而靠近車道線的道路兩邊由于車輛輪胎接觸較為頻繁, 紋理較為明顯, 對消失點的貢獻較大。因此, 隨機選取靠近車道線兩邊100 個點對消失點及其周圍的若干個點( 本文選取36 個點) 進行投票,如圖8 所示。

(2)車道線跟蹤:根據(jù)上一幀測量的結(jié)果,限定角度在一定變化范圍內(nèi)(本文限制在10°范圍,如圖8(b)所示)進行,這樣大大減少了運算速度。當圖像檢測的消失點及車道線上的點少于所設(shè)定的閾值時,程序重新初始化。

4 車道識別

本文在應(yīng)用的基礎(chǔ)上對合肥以及沈陽的BRT車道進行統(tǒng)計,其BRT車道相對其他車道具有如下特點:其左右車道線都為黃色,一般位于路的兩邊,道路的兩邊有欄桿或者路牙等特征?;诖颂攸c,本文實現(xiàn)了BRT車道的識別系統(tǒng),結(jié)合GPS判斷其所在位置范圍內(nèi)有無BRT車道,若有則判斷車道線顏色是否為黃色,即建立顏色模型,對車道線上的每一點顏色進行標記,并綜合判斷其左右車道線是否是黃色車道線,對黃色進行標記,如圖9左圖所示。由于車道線長期受到磨損有一定的失真,且在晚上黃光燈照射下不易準確地識別顏色,本文結(jié)合其欄桿、路牙等特征識別車道,對檢測的車道線兩邊的一定區(qū)域(圖9右圖白色矩形區(qū)域)進行對比,比較其顏色邊緣紋理等特征差別。通過大量的測試,本文得到了判斷其是否為BRT車道的先驗閾值,當矩形區(qū)域差別大于設(shè)定閾值時,則判斷為公交專用車道,從而準確實現(xiàn)車道檢測。

5 實驗結(jié)果與分析

實現(xiàn)BRT 車道識別的具體流程如圖10 所示。

本文首先通過GPS采集車輛所在區(qū)域的經(jīng)緯度信息, 并建立道路經(jīng)緯度信息庫判斷車輛所在位置附近是否具備BRT專用車道,若有,則進行車道線檢測,找到車輛所在車道的左右車道線,并判斷車道線上顏色信息以及車道線左右的邊緣亮度等信息,分析其是否具備BRT車道的特征,如具備,則可以作為監(jiān)控前方車輛是否違規(guī)駛?cè)隑RT車道的一個依據(jù)。

6 改進應(yīng)用

該模型不僅適用于公路等有車道線的結(jié)構(gòu)化道路,也可適用于車轍痕跡較為清晰的鄉(xiāng)間土路、沒有車道線的柏油路等非結(jié)構(gòu)化道路, 能夠較為準確地檢測道路的消失點。當車輛行進方向偏離其消失點時, 提醒司機采取相應(yīng)的措施, 從而實現(xiàn)了車道偏離預(yù)警, 可以有效地抑制事故的發(fā)生。圖12 為對白色區(qū)域進行Gabor 卷積運算, 將卷積結(jié)果較大( 即能量較大) 的點的方向繪制出來, 如圖12 右圖所示??梢钥闯?, 方向基本指向道路的消失點。圖13 為復(fù)雜道路的消失點, 其中圓圈表示消失點投票結(jié)果。

本文對合肥公交專用車道進行了大量的實驗,實驗結(jié)果表明,該算法具有很強的適用性,能夠準確地檢測到車輛所在車道的車道線,并對其車道作出正確的判斷。車道識別結(jié)果如圖11所示。

本文提出了基于道路紋理特征的車道線檢測方法,將直線模型算法成功移植到DM6437開發(fā)平臺。通過攝像頭實時采集道路圖像(25 S/s,圖像大小為720×576),實時統(tǒng)計車道線信息,并在城市道路上進行了大量的實驗測試,平均每幀圖像的算法耗時控制在50 ms以內(nèi),能夠較為準確地檢測出車道線的位置,具有較強的實時性和魯棒性。


上一頁 1 2 3 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉