新聞中心

EEPW首頁 > EDA/PCB > 設計應用 > 一種實用的逆變橋功率開關管門極關斷箝位電路

一種實用的逆變橋功率開關管門極關斷箝位電路

——
作者:劉振來 葉浩屹 胡 磊 何湘寧 時間:2007-02-07 來源:電子技術應用 收藏

摘 要:針對1KVA高頻在線式UPS主功率電路的設計,并結合實際電路調試中所遇到的問題,提出了一種實用的電路——橋功率開關管門極關斷電路,它可以有效地開關管門極的干擾,從而提高電路的;同時給出了部分電路的實驗波形和實驗結果。
 
關鍵詞

不間斷電源(Uninterrupted Power Supply,簡稱UPS)是一種穩(wěn)頻、穩(wěn)壓、純凈、不間斷的高質量電源,隨著電子和電器設備對電網質量要求的不斷增高,它已經成為許多重要場合必備的輔助電源。

1 電路及其控制

正弦脈寬調制(SPWM)技術在逆變器的控制中得到了廣泛應用,正弦脈寬調制方式很多,在此不一一描述。本電路采用的是倍頻式的調制方式,下面簡單加以介紹。

全橋逆變電路的基本結構如圖1所示。在倍頻式調制方式中,四個開關管的門極脈沖信號Vg1~Vg4的產生方法如圖2所示。四個開關管門極脈沖信號Vg1~Vg4與兩橋臂中點A、B間電壓VAB的波形也如圖2所示。

由圖2可以看出,在倍頻式調制方式中,A、B間電壓頻率是開關管工作頻率的兩倍,這種調制方式的好處在于在不增加開關管工作頻率的情況下,可以減小逆變器輸出濾波器的尺寸。它的缺點在于四個門極脈沖信號各不相同,提高了控制電路和脈沖發(fā)生電路的復雜性。本文提及的逆變電路開關管門極SPWM信號是由數(shù)字信號處理器(DSP)產生的,對于數(shù)字控制電路而言,倍頻式調制方式所帶來的電路復雜性可以忽略。

該電路采用IGBT作為功率開關管。由于IGBT寄生電容和線路寄生電感的存在,同一橋臂的開關管在開關工作時相互會產生干擾,這種干擾主要體現(xiàn)在開關管門極上。以上管開通對下管門極產生的干擾為例,實際驅動電路及其等效電路如圖3所示。

實際電路中,虛線框部分是IR2110的輸出推挽電路,RS、RP分別是T2門極串、并聯(lián)電阻,Zg是門極限幅穩(wěn)壓管。當上管T1開通時,下管T2門極信號必然為低電平,即M2導通,M2兩端可等效為一個電阻RM,這個電阻與RS、RP一起等效為電阻Rg。

Rg=(RM+RS)//RP≈RS(RM<S<P)

Zg兩端相當于開路。電容Cge和Cgc都是T2的寄生電容。電感L是功率電路線路的等效寄生電感,Lg是驅動電路的線路電感。

在T1開通前,由于互補門極信號死區(qū)的存在,T1、T2均處于關斷狀態(tài),橋臂中點電壓是高壓母線電壓VBUS的一半。當T1開通時,中點電壓立刻上升,很高的dv/dt使L和T2的寄生電容發(fā)生振蕩,由于Lg和Rg的存在且Cge的阻抗也并不足夠低,在T2門極會產生一個電壓尖刺。這個電壓尖刺幅值隨母線電壓VBUS和負載電流的增大而增大,可能達到足以導致T2瞬間誤導通的幅值,這時橋臂就會形成直通,造成電路燒毀。同樣地,當T2開通時,T1的門極也會有電壓尖刺產生。

通過減小RS和改善電路布線可以使這個電壓尖刺有所降低,但均不能達到可靠防止橋臂直通的要求。

2 門極關斷電路

針對前面的分析,本文將提出一種門極關斷箝位電路,通過在開關管驅動電路中附加這種電路,可以有效地降低上述門極尖刺。帶有門極關斷箝位電路的驅動電路如圖4所示。

門極關斷箝位電路由 MOSFET 管MC1和MC2、MC1門極下拉電阻RC1和MC2門極上拉電阻RC2組成。實際上該電路是由 MOSFET 構成的兩級反相器。當MC1門極為高電平時,MC1導通,MC2因門極為低電平而關斷,不影響功率開關管的正常導通;當MC1門極為低電平時,MC1關斷,MC2因門極為高電平而飽和導通,從而在功率開關管的門極形成了一個極低阻抗的通路,將功率開關管的門極電壓箝位在0V,基本上消除了上文中提到的電壓尖刺。

在使用這個電路時,要注意使MC2 D、S與功率開關管G、E間的連線盡量短,以最大限度地降低功率開關管門極寄生電感和電阻。在電路板的排布上,MC2要盡量靠近功率開關管,而MC1、RC1和RC2卻不必太靠近MC2,這樣既可以發(fā)揮該電路的作用,也不至于給電路板的排布帶來很大困難。

用雙極型晶體管(如8050)同樣可以實現(xiàn)上述電路的功能。雙極型晶體管是電流型驅動,其基極必須要串聯(lián)電阻。為了加速其關斷,同時防止其本身受到干擾,基極同樣需要并聯(lián)下拉電阻,這樣就使電路更加復雜。同時,要維持雙極型晶體管飽和導通,其基極就必須從電源抽取電流,在通常的應用場合這并無太大影響,但在自舉驅動并且是SPWM的應用場合,這些抽流會大大加重自舉電容的負擔,容易使自舉電容上的電壓過低而影響電路的正常工作。因此選用MOSFET來構成上述門極關斷箝位電路。

圖5是在沒有門極關斷箝位電路的情況下,直流母線電壓為100V時T2門極信號的波形??梢钥吹皆陂T極有一個電壓尖刺,這個尖刺與門極脈沖的時間間隔剛好等于死區(qū)時間,由此可以證明它是在同一橋臂另一開關管開通時產生的。

圖6是在有門極關斷箝位電路的情況下,直流母線電壓為400V時T2門極信號的波形。此時電壓尖刺基本消除。

通過實驗驗證,該電路確實可以和消除干擾,有一定的使用價值,可以提高電路的。

參考文獻
1 張占松,蔡宣三.開關電源的原理與設計.北京:電子工業(yè)出版社,1998.6
2 Philip C.Todd. UC3854 Controlled Power Factor Correction Circuit Design. Unitrode Application Note U-134,1997
3 A New Integrated Circuit for Current Mode Control.Unitrode Application Note U-93,1997
4 PPhilip C.Todd. Extend Current Transformer Range. Uni-trode Design Note DN-41,1997
5 林渭勛.電力電子技術基礎.北京:機械工業(yè)出版社,1990.10 



評論


相關推薦

技術專區(qū)

關閉