LED背光應(yīng)用:加強背光照明解決方案
白光LED和電池技術(shù)本文引用地址:http://2s4d.com/article/221965.htm
便攜式設(shè)備一般都用一枚鋰離子電池來工作,其電壓視所需的電荷介乎2.8~4.3V之間。白光LED正向電壓一般為3.5V,這是單一的鋰離子電池通常不能驅(qū)動的,因此需要采用升壓式DC/DC轉(zhuǎn)換器。轉(zhuǎn)換器可以是電容式(電荷泵)或電感式(磁力升壓)。由于電荷泵的體積較小,一般都會用在并聯(lián)LED驅(qū)動器上。至于磁力升壓轉(zhuǎn)換器,一般都會用于高壓的串聯(lián)驅(qū)動器內(nèi),原因是電荷泵技術(shù)所能達(dá)到的輸出電壓還不夠高。轉(zhuǎn)換器輸出電壓的調(diào)節(jié)可以通過LED正向電壓的感應(yīng)來自動(適配性)履行,或者用戶可根據(jù)LED正向電壓的規(guī)格來設(shè)定一個恒壓。
未來,新型鋰離子電池和LED技術(shù)將會為LED驅(qū)動帶來新的挑戰(zhàn)。配合最新的化學(xué)成果,電池電壓的范圍將擴(kuò)大到2.3~4.7V,而典型的白光LED正向電壓將會下降至2.9V。與此同時,輸出驅(qū)動器的飽和電壓都會隨著下降。當(dāng)采用并聯(lián)驅(qū)動時,要高效地驅(qū)動一個2.9V的LED,就需要動用一個升降壓轉(zhuǎn)換器。圖2所示為由電池、驅(qū)動器和LED技術(shù)的進(jìn)步所帶來的效果。
圖2電池和白光LED正向電壓的技術(shù)進(jìn)展
RGBLED背光照明
一般而言,小型LCD顯示屏背光照明都是用一組白光LED來實現(xiàn)的。可是,使用白光LED的問題是其光譜對光復(fù)制并不是很理想。原因是白光LED其實就是在藍(lán)光LED面上加上一層黃色磷光劑。這樣便造成光譜有兩個波峰,一個在藍(lán)色而另一個在黃色。圖3給出一個典型的白光LED與RGBLED光譜比較。
圖3典型白光LED與RGBLED光譜的比較
LCD顯示屏?xí)澐譃槿齻€主色區(qū)格:紅、綠和藍(lán),色彩是由這三種主色混合來定義。要把適合的顏色過濾到每一個色格,那便需要使用顏色過濾器。顏色過濾器會浪費大部分的光學(xué)能量,即使在過濾后也一樣,因此穿過LCD后的色譜并不理想。如此一來,采用白光LED背光照明可以在LCD屏面上產(chǎn)生出最多75%的NTSC(美國國家電視標(biāo)準(zhǔn)委員會)色彩(傳統(tǒng)LCD顯示屏上的紅色端邊處的限制尤甚)。然而,當(dāng)使用RGBLED來做LCD顯示屏的背光照明時,色彩復(fù)制可以覆蓋100%的NTSC色彩,從而令到顏色更光亮、畫質(zhì)更高。假如配合優(yōu)化的顏色過濾器,那所浪費的能耗可比白光LED背光照明來得更少。圖4所示為一個LCD顯示屏的結(jié)構(gòu)。
圖4LCD顯示屏的構(gòu)造
使用RGB背光時,當(dāng)LED溫度改變時,驅(qū)動器必須更正紅、綠和藍(lán)三主色間的亮度平衡,以防出現(xiàn)白點位移。此外,還需保證驅(qū)動器在任何操作溫度下維持光的正確強度。而在補償方面,可以用閉環(huán)或開環(huán)形式。若使用閉環(huán)補償,便需采用感光器來測量白點和其強度。相反地,如使用開環(huán)補償,那溫度便需事先量度出來,并通過預(yù)先定義好的補償曲線來調(diào)節(jié)亮度的平衡。美國國家半導(dǎo)體的LP5520就是RGB背光照明驅(qū)動器的一個例子,它是一個開環(huán)補償式LED驅(qū)動器。圖5所示為開環(huán)顏色補償?shù)脑怼F渲?,溫度補償曲線是用現(xiàn)實應(yīng)用中的RGBLED來量度的,這些曲線被編程在芯片內(nèi)部的EEPROM存儲器中。該芯片被集成到LCD顯示模塊上,而模塊的制造商會在生產(chǎn)時為補償曲線編程。此外,RGBLED背光亦可用作優(yōu)化顏色過濾器。
圖5開環(huán)顏色補償?shù)牟僮髟?/strong>
鍵盤背光照明和其他裝飾燈光
與顯示屏背光照明比較,鍵盤背光照明擁有一些特別的要求。鍵盤背光照明所要求的顏色不一定需要白色,可以是其他任何顏色。時下,便攜式設(shè)備中的鍵盤照明和其他裝飾燈的設(shè)計趨向是產(chǎn)生更多的燈光效果。顯示
評論