新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 球形檢測器在MIMO通信系統(tǒng)中的應(yīng)用及FPGA實現(xiàn)

球形檢測器在MIMO通信系統(tǒng)中的應(yīng)用及FPGA實現(xiàn)

作者: 時間:2010-09-21 來源:網(wǎng)絡(luò) 收藏

(SDM) MIMO 處理可顯著提高頻譜效率,進(jìn)而大幅增加無線通信系統(tǒng)的容量。 MIMO 通信系統(tǒng)作為一種能夠大幅提升無線系統(tǒng)容量和連接可靠性的手段,近來吸引了人們的廣泛關(guān)注。

MIMO 無線系統(tǒng)最佳硬判決檢測方式是最大似然 (ML) 檢測器。ML 檢測因為比特誤碼率 (BER)性能出眾,非常受歡迎。不過,直接實施的復(fù)雜性會隨著天線和調(diào)制方案的增加呈指數(shù)級增強(qiáng),使 ASIC 或 僅能用于使用少數(shù)天線的低密度調(diào)制方案。

在 MIMO 檢測中,既能保持與最佳 ML 檢測相媲美的 BER 性能,又能大幅降低計算復(fù)雜性的出色方法非球形檢測法莫屬。這種方法不僅能夠降低 SDM 和空分多接入系統(tǒng)的檢測復(fù)雜性,同時又能保持與最佳 ML 檢測相媲美的 BER 性能。實現(xiàn)有多種方法,每種方法又有多種不同算法,因此設(shè)計人員可以在諸如無線信道的吞吐量、BER 以及實施復(fù)雜性等多項性能指標(biāo)之間尋求最佳平衡。

雖然算法(比如 K-best 或者深度優(yōu)先搜索)和硬件架構(gòu)對 MIMO 檢測器的最終 BER 性顯而易見有極大的影響,不過一般在球形檢測之前進(jìn)行的信道矩陣預(yù)處理也會對 MIMO 檢測器的最終 BER 性能產(chǎn)生巨大影響。信道矩陣預(yù)處理可繁可簡,比如根據(jù)對信道矩陣進(jìn)行的方差計算結(jié)果 (variance computaTIon),計算出處理數(shù)據(jù)流的優(yōu)先次序,也可以使用非常復(fù)雜的矩陣因子分解方法來確定更為理想(以 BER 衡量)的數(shù)據(jù)流處理優(yōu)先次序。

Signum Concepts 是一家總部位于圣地亞哥的通信系統(tǒng)開發(fā)公司,一直與賽靈思和萊斯大學(xué)(Rice University)開展通力合作,運用 設(shè)計出了用于 802.16e 寬帶無線系統(tǒng)的空分復(fù)用MIMO 的MIMO 檢測器。該處理器采用信道矩陣預(yù)處理器,實現(xiàn)了類似貝爾實驗室分層空時 (BLAST)結(jié)構(gòu)上采用的連續(xù)干擾抵消處理技術(shù),最終達(dá)到了接近最大似然性能。

系統(tǒng)考慮因素

理想情況下,檢測過程要求對所有可能的符號向量組合進(jìn)行 ML 解決方案計算。旨在通過使用簡單的算術(shù)運算降低計算復(fù)雜性,同時還能夠保持最終結(jié)果的數(shù)值完整性。我們的方法,第一步是把復(fù)雜的數(shù)值信道矩陣分解為只有實數(shù)的表達(dá)式。這個運算增加了矩陣維數(shù),但簡化了處理矩陣元的計算。降低計算復(fù)雜性的第二個方面體現(xiàn)在,減少檢測方案分析和處理的可選符號。其中,對信道矩陣進(jìn)行 QR 分解是至關(guān)重要的一步。

圖 1 顯示的是如何進(jìn)行數(shù)學(xué)轉(zhuǎn)換,得出計算部分歐幾里德距離度量法的最終表達(dá)式。歐幾里德距離度量法是球形檢測過程的基礎(chǔ)。R代表三角形矩陣,用于處理以矩陣元 rM,M 開始的可選符號的迭代法。其中,M代表信道矩陣以實數(shù)表達(dá)的維數(shù)。該解決方案通過 M 次迭代定義出遍歷樹結(jié)構(gòu),樹的每層i對應(yīng)第i根天線的處理符號。

球形檢測器在MIMO通信系統(tǒng)中的應(yīng)用及FPGA實現(xiàn)

圖 1. 用于 MIMO 檢測的部分歐幾里德距離度量方程

球形檢測器處理天線的次序?qū)?BER 性能有著極大的影響。因此,在進(jìn)行球形檢測前,我們的設(shè)計采用了類似于 V-BLAST 技術(shù)的信道重新排序技術(shù)。

實現(xiàn)樹的遍歷有幾種可選方法。在我們的實施方案中,則使用了廣度優(yōu)先搜索法,這是因為該方法采用備受歡迎的前饋結(jié)構(gòu),因此具有硬件友好特征。在每一層,該實施方案只選擇K 個距離最小的幸存節(jié)點來計算擴(kuò)展情況。

球形檢測器處理天線的次序?qū)?BER 性能有著極大的影響。因此,在進(jìn)行球形檢測前,我們的設(shè)計采用了類似于 V-BLAST 技術(shù)的信道重新排序技術(shù)。

該方法通過多次迭代,計算出信道矩陣的偽逆矩陣的行范數(shù),然后確定信道矩陣最佳列檢測次序。根據(jù)迭代次數(shù),該方法可以選擇出范數(shù)最大或者最小的行。歐幾里德范數(shù)最小的逆矩陣行表示天線的影響最強(qiáng),而歐幾里德范數(shù)最大的行則表示天線的影響最弱。這種新穎的方法首先處理最弱的數(shù)據(jù)流,隨后依次迭代處理功率從高到低的數(shù)據(jù)流。

硬件應(yīng)用

為實現(xiàn)上述系統(tǒng),我們采用了賽靈思 Virtex?-5 FPGA 技術(shù)。該設(shè)計流程采用賽靈思 System Generator 進(jìn)行設(shè)計捕獲、仿真和驗證。為了支持各種不同數(shù)量的天線/用戶和調(diào)制次序,我們將檢測器設(shè)計用于要求最高的 4x4、64-QAM 情況下。

我們的模型假定接收方非常清楚信道矩陣,這可以通過傳統(tǒng)的信道估算方法來實現(xiàn)。在信道重新排序和 QR 分解之后,我們開始使用球形檢測器。為準(zhǔn)備使用軟輸入、軟輸出信道解碼器(比如 turbo 解碼器),我們通過計算檢測到的比特的對數(shù)似然比 (LLR) 來生成軟輸出。

該系統(tǒng)的主要架構(gòu)元素包括數(shù)據(jù)副載波處理和系統(tǒng)子模塊管理功能,以便實時處理所需數(shù)量的子載波,同時最大程度地降低處理時延。對每個數(shù)據(jù)副載波都進(jìn)行了信道矩陣估算,限定了每個信道矩陣可用的處理時間。對選中的 FPGA 而言,其目標(biāo)時鐘頻率為 225MHz,通信帶寬為 5MHz(相當(dāng)于 WiMAX 系統(tǒng)中的 360 個數(shù)據(jù)子載波),每個信道矩陣間隔可用的處理時鐘周期數(shù)為 64。

我們采用硬件功能單元精湛的流水線和時分復(fù)用 (TDM) 功能,以達(dá)到 WiMAX OFDM 符號的實時要求。

除了高數(shù)據(jù)率外,在架構(gòu)設(shè)計指導(dǎo)過程中控制子模塊時延也是一個重要的問題。我們通過引入連續(xù)信道矩陣的 TDM 解決了時延問題。這種方法可以延長同一信道矩陣元之間的處理時間,同時還能保持較高的數(shù)據(jù)吞吐量。構(gòu)成 TDM 組的信道數(shù)會隨著子模塊的不同而變化。在 TDM 方案中,信道矩陣求逆過程用了 5 個信道,而有 15 個信道在實數(shù) QR 分解模塊中進(jìn)行了時分復(fù)用。圖 2 是該系統(tǒng)的高級流程圖。

球形檢測器在MIMO通信系統(tǒng)中的應(yīng)用及FPGA實現(xiàn)

圖 2. MIMO 802.16e 寬帶無線接收器的高級流程圖

信道矩陣預(yù)處理

信道矩陣預(yù)處理器確定了空分復(fù)用復(fù)合信號每一層的最佳檢測次序。該預(yù)處理器負(fù)責(zé)計算信道矩陣的偽逆矩陣范數(shù),并根據(jù)這些范數(shù),選擇待處理的下一個傳輸流。偽逆矩陣中范數(shù)最小的行對應(yīng)著最強(qiáng)傳輸流(檢波后噪聲放大最小),而范數(shù)最大的行對應(yīng)著質(zhì)量最差的層(檢波后噪聲放大最大)。我們的實施方案首先檢測最弱的層,然后按最低噪聲放大到最高噪聲放大的次序逐層檢測。對排序過程中的每一步,信道矩陣中相應(yīng)的列隨后會被清空,然后簡化后的矩陣進(jìn)入下一級的天線排序處理流水線。

在預(yù)處理算法中,偽逆矩陣的計算要求最高。這個過程的核心是矩陣求逆,通常通過吉文斯(Givens) 旋轉(zhuǎn)進(jìn)行 QR 分解 (QRD) 來實現(xiàn)。常用的角度估算和平面旋轉(zhuǎn)算法(如 CORDIC)會造成嚴(yán)重的系統(tǒng)時延,對我們的系統(tǒng)來說是不可接受的。因此,我們的目標(biāo)是運用 FPGA 的嵌入式 DSP 資源(比如 Virtex-5 器件中的 DSP48E),找出矢量旋轉(zhuǎn)和相位估算的替代性解決方案。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉