信號鏈基礎知識:高速數模轉換器的數字特性
TI 的 DAC34H84是一款 4 通道、16 位、1250 Msps 的 DAC。這樣做的原因是,它是一種典型的高速數模轉換器,擁有隔離輸入和 DAC 時鐘域的輸入 FIFO、插值數字模塊、精細頻率分辨率數字正交調制、模擬正交調制器校正以及 sin(x)/x 校正(請參見圖 1)。本文將逐一介紹這些特性的功能和作用。
本文引用地址:http://2s4d.com/article/205805.htm第一個數字模塊是插值模塊,它負責增加 DAC 內部數字信號的采樣速率。一般而言,利用兩倍采樣速率增加步驟,來實現插值。利用在輸入采樣點之間插入零來完成這項工作,其在 fIF 和 FIN – fIF 產生兩個信號。通過一個數字低通濾波器后,去掉了位于 FIN – fIF 的第二個信號,只在 fIF 留有信號。使用插值的原因與大多數高速 DAC 使用的零階保持輸出結構有關。利用零階保持,DAC 根據時鐘周期初期的數字采樣對輸出振幅進行相應的設置,然后保持住,直到時鐘周期和下一個輸出采樣末端為止。這樣便產生一種“上樓梯式”的輸出,其頻率響應如方程式 1 表示:
圖 1 DAC34H84 功能結構圖
其中,fIF 為模擬輸出頻率,而 fs 為采樣速率。這種響應具有低通效果(請參見圖 2),其 f = fs/2 時的損耗為 ~ 3.5 dB,并在 fs 倍數時為零。盡管 DAC 輸出在 N*fs +/- fIF 時會有信號圖像,但較高奈奎斯特 (Nyquist) 區(qū)域的圖像振幅遠低于 fIF 處的信號,從而有更低的信噪比 (SNR),并可能出現明顯的振幅下降。這便將大多數應用限制在 fs/2 以下的輸出信號頻率。另外,fIF 處的信號和 fs – fIF 圖像之間的間隔,隨著 fIF 接近 fs/2 而減小,從而讓 DAC 輸出端的模擬濾波器(作用是去除 fs – fIF 多余圖像)難以建立,最終將大多數應用的 fIF 限制在 fs/3 以下。
圖 2 無插值模塊的 DAC 輸出頻譜
利用 DAC 插值模塊增加 DAC 內部采樣速率,只需讓 DAC 的數字接口速率 fIN 足夠高,以允許信號帶寬傳輸,并且只需增加少量的額外帶寬便可以擁有插值濾波器過渡頻帶(實信號時 fin > 2.5*BW,復信號時 fin > 1.25*BW)。利用插值增加采樣速率,可以讓信號輕松地位于 fs/2 以下。
增加采樣速率的另一個好處是,讓數字混頻能夠將輸出IF增加至更高頻率。例如,使用 2X 插值,輸出頻率便可高于 fin/2,而如果不使用插值就不可能獲得這一結果(請參見圖 3)。一般而言,復輸入信號使用復混頻器,目的是避免混頻過程中產生圖像?;祛l輸出可以為實 IF 信號,也可以是復 IF 信號,在模擬 IQ 調制器 DAC 之后有效。
評論