新聞中心

EEPW首頁 > 設(shè)計(jì)應(yīng)用 > 通過應(yīng)力和應(yīng)變管理,實(shí)現(xiàn)出色的高精度傾斜/角度檢測(cè)性能

通過應(yīng)力和應(yīng)變管理,實(shí)現(xiàn)出色的高精度傾斜/角度檢測(cè)性能

作者:ADI 公司 | Paul Perrault - 高級(jí)現(xiàn)場(chǎng)應(yīng)用工程師, Mahdi Sadeghi - MEMS產(chǎn)品應(yīng)用工程師 時(shí)間:2021-05-24 來源:電子產(chǎn)品世界 收藏


本文引用地址:http://2s4d.com/article/202105/425804.htm

簡(jiǎn)介

加速度計(jì)是一種非常不錯(cuò)的傳感器,可以檢測(cè)到開始傾塌的大橋在重力作用下,呈現(xiàn)細(xì)微的方向變化時(shí)的靜態(tài)和動(dòng)態(tài)加速度。這些傳感器包括當(dāng)您傾斜手機(jī)顯示屏?xí)r,可以改變顯示屏方向的手機(jī)應(yīng)用器件,也包括受出口管制,可以幫助軍用車輛或航天器導(dǎo)航的戰(zhàn)術(shù)級(jí)器件。1但是,與大多數(shù)傳感器一樣,該傳感器在實(shí)驗(yàn)室或試驗(yàn)臺(tái)上表現(xiàn)出色是一回事,面對(duì)荒涼、不受控制的環(huán)境條件和溫度應(yīng)力時(shí)要保持同等的系統(tǒng)級(jí)性能,則完全是另一回事了。像人類一樣,當(dāng)加速度計(jì)在其生命周期中承受了前所未有的應(yīng)力時(shí),系統(tǒng)會(huì)做出反應(yīng)并可能因這些應(yīng)力的影響而發(fā)生故障。

高精度傾斜檢測(cè)系統(tǒng)在校準(zhǔn)之后,傾斜精度一般可以優(yōu)于1°。使用市場(chǎng)領(lǐng)先的超低噪聲和高度穩(wěn)定的加速度計(jì),例如ADXL354或ADXL355,通過對(duì)可觀測(cè)到的誤差源進(jìn)行校準(zhǔn),其傾斜精度可以達(dá)到0.005°。2但是,只有在適當(dāng)減輕應(yīng)力的情況下才能達(dá)到這種精度水平。例如,傳感器承受的壓縮/拉應(yīng)力可能導(dǎo)致其出現(xiàn)高達(dá)20 mg的偏移,使得傾斜誤差超過1°。

本文探討采用加速度計(jì)的高精度角度/傾斜檢測(cè)系統(tǒng)的性能指標(biāo)。我們首先從微觀角度分析傳感器設(shè)計(jì),以便更好地了解微米級(jí)別應(yīng)力和應(yīng)變的影響。分析表明,如果不遵循整體的機(jī)械和物理設(shè)計(jì)方法,則會(huì)出現(xiàn)一些令人驚訝的結(jié)果。最后,為設(shè)計(jì)人員介紹了有助于在要求嚴(yán)苛的應(yīng)用中充分提升性能的切實(shí)可行的步驟。

ADXL35x傳感器設(shè)計(jì)

從價(jià)格和性能角度來看,基于MEMS的加速度計(jì)適用于從消費(fèi)類產(chǎn)品到軍用檢測(cè)的各類應(yīng)用。在ADI產(chǎn)品組合中,性能最出色的低噪聲加速度計(jì)是ADXL354和ADXL355,支持精密傾斜檢測(cè)、地震成像等應(yīng)用,以及機(jī)器人和平臺(tái)穩(wěn)定等許多新興應(yīng)用。ADXL355具備市場(chǎng)領(lǐng)先的特性,使其在高精度傾斜/角度檢測(cè)應(yīng)用中具有獨(dú)特的優(yōu)勢(shì),例如出色的噪聲、偏移、重復(fù)性和與溫度相關(guān)的偏移,以及振動(dòng)校正和跨軸靈敏度等二階效應(yīng)。本文將以這種特定的傳感器作為高精度加速度計(jì)的示例來詳細(xì)探討;但是,本節(jié)中討論的原理適用于絕大多數(shù)三軸MEMS加速度計(jì)。

為了更好地理解促使ADXL355實(shí)現(xiàn)出色性能的設(shè)計(jì)考量,我們首先來回顧傳感器的內(nèi)部結(jié)構(gòu),闡明三軸對(duì)環(huán)境參數(shù)(例如,平面外應(yīng)力)做出不同響應(yīng)的原因。在許多情況下,這種平面外應(yīng)力都是由傳感器z軸上的溫度梯度引起的。

1621820477682220.jpg

圖1 ADXL355的傳感器架構(gòu)。對(duì)于X/Y傳感器,隨著檢測(cè)質(zhì)量塊的移動(dòng),固定指與質(zhì)量塊所連接的叉指之間的電容會(huì)發(fā)生變化。z軸傳感器上的質(zhì)量不均衡,因此可以對(duì)z軸加速度進(jìn)行平面外檢測(cè)

ADXL35x系列加速度計(jì)包含一個(gè)彈簧質(zhì)量系統(tǒng),這與許多其他的MEMS加速度計(jì)類似。質(zhì)量響應(yīng)外部加速度(靜態(tài)加速度(如重力)或動(dòng)態(tài)加速度(如速度變化))而移動(dòng),其物理位移通過傳導(dǎo)機(jī)制進(jìn)行檢測(cè)。MEMS傳感器采用的最常見的傳導(dǎo)機(jī)制包括電容式、壓阻式、壓電式或磁性。ADXL355采用電容傳導(dǎo)機(jī)制,通過電容變化來檢測(cè)移動(dòng),而電容變化通過讀取電路可轉(zhuǎn)換為電壓或電流輸出。雖然ADXL355對(duì)硅芯片上的所有三軸傳感器都采用了電容傳導(dǎo)機(jī)制,但X/Y傳感器和Z傳感器采用了兩種完全不同的電容檢測(cè)架構(gòu)。X/Y傳感器均基于差分平面內(nèi)叉指,而Z傳感器是平面外平行板電容傳感器,如圖1所示。

如果傳感器上存在壓縮應(yīng)力或拉應(yīng)力,MEMS芯片會(huì)翹曲。由于檢測(cè)質(zhì)量塊通過彈簧懸掛在襯底上方,所以不會(huì)和襯底一起翹曲,但質(zhì)量塊和襯底之間的間隙會(huì)發(fā)生變化。對(duì)于X/Y傳感器,由于平面內(nèi)位移對(duì)叉指電容變化的影響最大,所以間隙不在電容靈敏度這個(gè)方向,這是由邊緣電場(chǎng)的補(bǔ)償作用導(dǎo)致的。但是,對(duì)于Z傳感器,襯底和檢測(cè)質(zhì)量塊之間的間隙實(shí)際上是檢測(cè)間隙。所以,它會(huì)對(duì)Z傳感器產(chǎn)生直接影響,因?yàn)樗行Ц淖兞薢傳感器的檢測(cè)間隙。此外,Z傳感器位于芯片中央,只要芯片受到任何應(yīng)力,該位置都會(huì)產(chǎn)生最大程度翹曲。

除了物理應(yīng)力之外,由于在大多數(shù)應(yīng)用中,z軸上的熱傳遞都不對(duì)稱,所以z軸傳感器上經(jīng)常存在溫度梯度。在典型應(yīng)用中,傳感器焊接在印刷電路板(PCB)上,而且整個(gè)系統(tǒng)都在封裝內(nèi)。X和Y軸的熱傳遞主要通過封裝周邊的焊點(diǎn)來傳遞,并傳遞到對(duì)稱的PCB上。但是,在z方向,由于芯片頂部存在焊點(diǎn)和對(duì)流,所以熱傳遞通過底部傳導(dǎo),熱量會(huì)通過空氣傳遞到封裝外。由于這種不匹配,z軸上會(huì)出現(xiàn)殘余的溫差梯度。與物理壓縮/拉應(yīng)力一樣,這會(huì)使z軸上出現(xiàn)并非由加速度導(dǎo)致的偏移。

受環(huán)境應(yīng)力影響的數(shù)據(jù)評(píng)述

ADXL354(模擬輸出)加速度計(jì)可以連接至任何模擬數(shù)據(jù)采集系統(tǒng)來實(shí)施數(shù)據(jù)分析,而ADXL355評(píng)估板經(jīng)過優(yōu)化,可直接放入客戶系統(tǒng)中,從而簡(jiǎn)化了現(xiàn)有嵌入式系統(tǒng)的原型設(shè)計(jì)。為了闡明本文主旨,我們使用了小型評(píng)估板EVAL-ADXL35x。為了記錄和分析數(shù)據(jù),我們將EVAL-ADXL35x連接至SDP-K1微控制器板,并使用Mbed?環(huán)境進(jìn)行編程。Mbed是適用于ARM?微控制器板的開源和免費(fèi)開發(fā)環(huán)境,配有一個(gè)在線編譯器,可以幫助您快速構(gòu)建。SDP-K1板在連接至PC時(shí),會(huì)顯示為外部驅(qū)動(dòng)器。要對(duì)該板編程時(shí),只需將編譯器生成的二進(jìn)制文件拖放到SDP-K1驅(qū)動(dòng)器中即可。3, 4

一旦Mbed系統(tǒng)通過UART記錄數(shù)據(jù),就形成了一個(gè)基本的測(cè)試環(huán)境,可以嘗試進(jìn)行ADXL355實(shí)驗(yàn),并將輸出傳輸?shù)胶?jiǎn)單端口,用于記錄數(shù)據(jù)和進(jìn)一步分析。需要注意的是,無論加速度計(jì)的輸出數(shù)據(jù)速率是多少,Mbed代碼都以2 Hz的速率記錄寄存器。在Mbed中也可以采用更快的記錄速度,但本文不做闡述。

良好的初始數(shù)據(jù)集有助于確定基準(zhǔn)性能,并驗(yàn)證我們后續(xù)進(jìn)行的大部分?jǐn)?shù)據(jù)分析中可能出現(xiàn)的噪聲水平。使用具有吸盤裝置的PanaVise鉸接式虎鉗5,這樣將該設(shè)備粘附在玻璃表面時(shí),就可以通過工作臺(tái)設(shè)置實(shí)現(xiàn)相當(dāng)穩(wěn)定的工作表面。采用這種配置,ADXL355板(從側(cè)面固定)與實(shí)驗(yàn)室工作臺(tái)一樣穩(wěn)定。更高級(jí)的電力用戶可能會(huì)注意到,安裝這種虎鉗存在傾翻風(fēng)險(xiǎn),但這是一種簡(jiǎn)單而經(jīng)濟(jì)的方法,可以根據(jù)重力改變方向。如圖2所示安裝ADXL355板之后,持續(xù)60秒采集一組數(shù)據(jù)進(jìn)行首次分析。

1621820511555848.jpg

圖2 使用EVAL-ADXL35x、SDP-K1和PanaVise支架的測(cè)試裝置

1621820527506080.jpg

圖3 未采用低通濾波器(寄存器0x28=0x00)時(shí)的ADXL355數(shù)據(jù),采集數(shù)據(jù)時(shí)長(zhǎng)超過1分鐘

取120個(gè)數(shù)據(jù)點(diǎn)并測(cè)量標(biāo)準(zhǔn)偏差,顯示噪聲在800 μg到1.1 mg之間。根據(jù)ADXL355數(shù)據(jù)手冊(cè)中的典型性能規(guī)格,我們看到列出的噪聲密度為25 μg/√Hz。在默認(rèn)的低通濾波器(LPF)設(shè)置下,加速度計(jì)的帶寬約為1000 Hz。假設(shè)采用磚墻式濾波器,此時(shí)噪聲大約為25 μg/√Hz × √1000 Hz = 791 μg rms。這個(gè)初始數(shù)據(jù)集通過了首次取樣測(cè)試。準(zhǔn)確地說,從噪聲譜密度向有效值噪聲的轉(zhuǎn)換采用的系數(shù)應(yīng)可以表示一個(gè)事實(shí),即數(shù)字LPF不會(huì)無限滾降(也就是,一個(gè)磚墻式濾波器)。有些使用1.6×系數(shù)可實(shí)現(xiàn)簡(jiǎn)單的RC單極點(diǎn)20 dB/倍頻程滾降,但ADXL355數(shù)字低通濾波器不是單極點(diǎn)RC濾波器。無論如何,假設(shè)系數(shù)在1和1.6之間,至少可以讓我們正確預(yù)估噪聲近似值。

對(duì)于許多精密檢測(cè)應(yīng)用,相對(duì)于被測(cè)量的信號(hào),1000 Hz帶寬的范圍過于寬大。為了幫助優(yōu)化帶寬和噪聲之間的折衷空間,ADXL355采用了一個(gè)板載數(shù)字低通濾波器。在接下來的測(cè)試中,我們將LPF設(shè)置為4 Hz,這將使噪聲以√1000/√4 ≈ 16的噪聲系數(shù)降低。該測(cè)試在Mbed環(huán)境中使用圖4所示的簡(jiǎn)單結(jié)構(gòu)完成,數(shù)據(jù)如圖5所示。6經(jīng)過濾波后,噪聲如預(yù)期一樣顯著下降。如表1所示。

1621820548646729.jpg

圖4 用于配置寄存器的Mbed代碼

1621820565377486.jpg

圖5 LPF設(shè)置為4 Hz(寄存器0x28=0x08)時(shí)的ADXL355數(shù)據(jù),采集數(shù)據(jù)時(shí)長(zhǎng)超過1分鐘

表1 ADXL355的預(yù)期噪聲和測(cè)量噪聲

噪聲

X

Z

理論值(μg)

測(cè)量值(μg)

理論值(μg)

測(cè)量值(μg)

理論值(μg)

測(cè)量值(μg)

無濾波器

791

923

791

1139

791

805

4 Hz濾波器

50

58

50

185

50

63

表1顯示,在當(dāng)前設(shè)置下,y軸的噪聲高于預(yù)期的理論值。在調(diào)查了可能的原因后,我們發(fā)現(xiàn),額外的筆記本電腦和其他實(shí)驗(yàn)室設(shè)備風(fēng)扇的振動(dòng)可能在y軸上表現(xiàn)為噪聲。為了驗(yàn)證這一點(diǎn),我們轉(zhuǎn)動(dòng)虎鉗,讓x軸到達(dá)y軸原先所在的位置,結(jié)果顯示,x軸成為了噪聲更高的軸。軸與軸之間的噪聲差異則似乎是儀表噪聲,而不是加速度計(jì)各軸之間噪聲水平本身的差異。這種類型的測(cè)試實(shí)際上是對(duì)低噪聲加速度計(jì)的“初始”測(cè)試,從而增強(qiáng)了進(jìn)一步測(cè)試的信心。

為了解熱沖擊會(huì)對(duì)ADXL355造成多大影響,我們選用了一把熱風(fēng)槍7,將它調(diào)整到冷風(fēng)模式(實(shí)際上比室溫高幾度),以便給加速度計(jì)施加熱應(yīng)力。我們也使用ADXL355的板載溫度傳感器來記錄溫度。在本次實(shí)驗(yàn)中,我們使用虎鉗將ADXL355垂直放置,用熱風(fēng)槍對(duì)封裝頂部吹風(fēng)。我們預(yù)期實(shí)驗(yàn)過程中偏移時(shí)的溫度系數(shù)會(huì)隨著芯片溫度的升高而顯現(xiàn),但任何溫差熱應(yīng)力幾乎會(huì)立即呈現(xiàn)出來。換句話說,如果單個(gè)檢測(cè)軸對(duì)溫差熱應(yīng)力很敏感,那么加速度計(jì)輸出中可能出現(xiàn)大的起伏。刪除數(shù)據(jù)變化較為平緩時(shí)的平均值,就可輕松地同時(shí)比較三個(gè)軸。結(jié)果如圖6所示。

1621820586240571.jpg

圖6 使用采用冷風(fēng)模式的熱風(fēng)槍時(shí),ADXL355的熱沖擊數(shù)據(jù)

從圖6中可以看出,用熱風(fēng)槍將溫度稍高的風(fēng)吹到密封型陶瓷封裝上。結(jié)果,z軸上出現(xiàn)~1500 μg的偏移,y軸上的偏移要小的多(可能為~100 μg),x軸上則幾乎無偏移。雖然許多最終客戶產(chǎn)品的PCB頂部有外殼,可以分散溫差熱應(yīng)力,但我們需要考慮這些類型的快速瞬變應(yīng)力,從這個(gè)簡(jiǎn)單測(cè)試中可以看出,這些應(yīng)力可能會(huì)表現(xiàn)為偏移誤差。

圖7顯示了關(guān)閉熱風(fēng)槍之后,呈現(xiàn)的相反的極性效應(yīng)。

1621820605538926.jpg

圖7 在t = 240秒關(guān)閉熱風(fēng)槍時(shí),ADXL355受到的熱沖擊

在加熱環(huán)境中使用熱風(fēng)槍時(shí),這種效果更加明顯;即溫度沖擊的幅度更大時(shí)。Weller熱風(fēng)槍的輸出溫度約為400℃,所以在使用時(shí),需間隔一段距離,以免因?yàn)檫^熱或熱沖擊造成損壞。在本次測(cè)試中,熱風(fēng)槍在距離ADXL355大約15 cm的位置吹出熱風(fēng),導(dǎo)致溫度立即升高大約40°C,如圖8所示。

1621820624273820.jpg

圖8 使用熱風(fēng)槍時(shí),ADXL355受到的熱沖擊

盡管熱沖擊的強(qiáng)度相當(dāng)大,但在本次實(shí)驗(yàn)期間,仍然可以明顯看到,z軸的反應(yīng)速度要比x軸和y軸快得多。使用數(shù)據(jù)手冊(cè)中的偏移溫度系數(shù),當(dāng)溫度發(fā)生40℃偏移時(shí),將會(huì)看到約100 μg/°C × 40 °C = 4 mg的偏移,x軸和y軸最終會(huì)顯示這一點(diǎn)。但是,我們發(fā)現(xiàn),z軸上幾乎立刻出現(xiàn)10 mg偏移,說明這種影響與溫度導(dǎo)致的偏移不同。這是由傳感器上的溫差熱應(yīng)力/應(yīng)變?cè)斐傻?,在z軸上表現(xiàn)得最明顯,這是因?yàn)?,如前文所述,相比x和y軸,z軸上的傳感器對(duì)溫差應(yīng)力更敏感。

在數(shù)據(jù)手冊(cè)中,ADXL355的典型偏移溫度系數(shù)(失調(diào)溫度系數(shù))為±100 μg/°C。我們需要理解此處所用的測(cè)試方法,這非常重要,因?yàn)槭д{(diào)溫度系數(shù)是在烤箱中使用加速度計(jì)進(jìn)行測(cè)量的。在傳感器的溫度范圍內(nèi),烤箱溫度慢慢上升,我們測(cè)量偏移的斜度。典型示例如圖9所示。

1621820641531189.jpg

圖9 ADXL355在烤箱中進(jìn)行測(cè)試的溫度特性

圖中顯示了兩種影響。一種是數(shù)據(jù)手冊(cè)中描述和記錄的失調(diào)溫度系數(shù)。這是烤箱以5°C/min的速度升溫,但不保溫的情況下,在–45°C到+120°C溫度范圍內(nèi)許多產(chǎn)品的平均值。從與圖9類似的圖表中可以得出此結(jié)果,且可以指出在高于165°C時(shí)為18 mg,或約109 μg/°C,稍微超出100 μg/°C典型值的范圍,但仍在數(shù)據(jù)手冊(cè)規(guī)定的最小值和最大值范圍內(nèi)。但是,考慮一下圖9右側(cè)所示的情況,讓器件在120°C下保溫15分鐘會(huì)怎么樣。當(dāng)設(shè)備處于高溫下時(shí),實(shí)際的偏移量下降并改善。在這種情況下,平均值在高于165°C時(shí)接近10 mg,或失調(diào)溫度系數(shù)約為60 μg/°C。產(chǎn)生的第二種影響與溫差熱應(yīng)力有關(guān),傳感器檢測(cè)質(zhì)量塊在整個(gè)硅芯片器件的溫度范圍內(nèi)穩(wěn)定下來后,應(yīng)力隨之降低。圖6到圖8所示的熱風(fēng)槍測(cè)試也顯示了這種影響,與數(shù)據(jù)手冊(cè)中列出的長(zhǎng)期失調(diào)溫度系數(shù)相比,這種影響會(huì)在更短的時(shí)間量程內(nèi)顯現(xiàn),了解這一點(diǎn)非常重要。對(duì)于因受總體的熱動(dòng)力學(xué)影響,升溫速度遠(yuǎn)遠(yuǎn)慢于5°C/min的許多系統(tǒng)而言,上述發(fā)現(xiàn)很有價(jià)值。

影響ADXL355穩(wěn)定性的其他因素

在深入理解設(shè)計(jì)中的熱應(yīng)力之后,還需了解慣性傳感器的另一個(gè)重要方面,即其長(zhǎng)期穩(wěn)定性或可重復(fù)性??芍貜?fù)性是指在相同條件下長(zhǎng)時(shí)間連續(xù)測(cè)量的準(zhǔn)確性。例如,在一段時(shí)間內(nèi),對(duì)相同溫度下同一方向的重力場(chǎng)進(jìn)行兩次測(cè)量,并觀察其匹配程度。對(duì)于無法定期實(shí)施維護(hù)校準(zhǔn)的應(yīng)用,在評(píng)估傳感器的長(zhǎng)期穩(wěn)定性時(shí),偏移的可重復(fù)性和靈敏度是至關(guān)重要的因素。許多傳感器制造商未在其數(shù)據(jù)手冊(cè)中描述或規(guī)定長(zhǎng)期穩(wěn)定性。在ADI的ADXL355數(shù)據(jù)手冊(cè)中,可重復(fù)性為10年壽命預(yù)測(cè)值,包括高溫工作壽命測(cè)試(HTOL)(TA = 150℃、VSUPPLY = 3.6 V、1000小時(shí))、測(cè)量溫度循環(huán)(?55℃至+125℃且循環(huán)1000次)、速度隨機(jī)游走、寬帶噪聲和溫度遲滯引起的測(cè)量偏移。如數(shù)據(jù)手冊(cè)中所示,ADXL35x系列具有出色的可重復(fù)性,ADXL355的X/Y傳感器和Z傳感器的精度分別為±2 mg和±3 mg。

在穩(wěn)定的機(jī)械、環(huán)境和慣性條件下,可重復(fù)性遵循平方根定律,因?yàn)樗c測(cè)量的時(shí)間有關(guān)。例如,要獲得x軸在兩年半的時(shí)間里(對(duì)于最終產(chǎn)品來說,可能是很短的一段時(shí)間)的偏移可重復(fù)性,可以使用以下公式計(jì)算:±2 mg × √(2.5年/10年) = ±1 mg。圖10顯示在23天內(nèi),32個(gè)器件的HTOL測(cè)試結(jié)果:偏移為0 g。在此圖中可以清楚地看到平方根定律。還應(yīng)該強(qiáng)調(diào)的是,由于MEMS傳感器制造過程中的工藝差異,每個(gè)器件的性能都不同,有些器件的性能優(yōu)于其他器件。

1621820658271987.jpg

圖10 ADXL355長(zhǎng)達(dá)500小時(shí)的長(zhǎng)期穩(wěn)定性

機(jī)械系統(tǒng)設(shè)計(jì)建議

經(jīng)過上述分析探討,很明顯可以看出,機(jī)械安裝表面和外殼設(shè)計(jì)可以幫助提升ADXL355傳感器的總體性能,因?yàn)樗鼈儠?huì)影響傳遞給傳感器的物理應(yīng)力。一般來說,機(jī)械安裝、外殼和傳感器會(huì)構(gòu)成一個(gè)二階(或更高階)系統(tǒng);因此,在諧振或過阻尼期間,它會(huì)做出不同的響應(yīng)。機(jī)械支持系統(tǒng)具有代表這些二階系統(tǒng)的模式(由諧振頻率和品質(zhì)因數(shù)定義)。在大多數(shù)情況下,我們的目標(biāo)是了解這些因素,并盡量減少它們對(duì)傳感系統(tǒng)的影響。因此,選擇的傳感器的封裝外形、所有接口和材料都應(yīng)該能夠避免在ADXL355應(yīng)用的帶寬內(nèi)造成機(jī)械衰減(因?yàn)檫^阻尼)或放大(因?yàn)橹C振)。本文對(duì)這些具體的設(shè)計(jì)考量因素不予過多探討;但是,會(huì)簡(jiǎn)要列出一些實(shí)用項(xiàng):

PCB、安裝和外殼

■   將PCB牢固地粘接在剛性襯底上。使用多個(gè)安裝螺釘,并在PCB背面使用粘膠,確保牢靠支持。

■   將傳感器放置在靠近安裝螺釘或緊固件的位置。如果PCB體積較大(約幾英寸),則在板中央使用多個(gè)安裝螺釘,避免PCB出現(xiàn)低頻振動(dòng),因?yàn)檫@種振動(dòng)會(huì)影響加速度計(jì)的測(cè)量結(jié)果。

■   如果PCB只是由凹槽/凸沿結(jié)構(gòu)提供機(jī)械支撐,則使用更厚的PCB(推薦厚度大于2 mm)。在PCB尺寸較大時(shí),增加其厚度來保持系統(tǒng)的剛性。使用有限元分析(例如ANSYS或類似分析),針對(duì)特定設(shè)計(jì)確定最佳PCB外形尺寸和厚度。

■   對(duì)于一些應(yīng)用,例如對(duì)傳感器實(shí)施長(zhǎng)時(shí)間測(cè)量的結(jié)構(gòu)健康監(jiān)測(cè)應(yīng)用,傳感器的長(zhǎng)期穩(wěn)定性至關(guān)重要。在選擇封裝、PCB和粘膠材料時(shí),應(yīng)選擇在長(zhǎng)時(shí)間內(nèi)性能下降或機(jī)械特性變化最小的產(chǎn)品,以免給傳感器帶來額外的應(yīng)力,進(jìn)而導(dǎo)致出現(xiàn)偏移。

■   避免對(duì)外殼的固有頻率進(jìn)行假設(shè)。對(duì)簡(jiǎn)單的外殼實(shí)施固有振動(dòng)模型計(jì)算,對(duì)復(fù)雜的外殼設(shè)計(jì)實(shí)施有限元分析,將會(huì)很有幫助。

■   將ADXL355和電路板焊接在一起會(huì)產(chǎn)生應(yīng)力,導(dǎo)致出現(xiàn)高達(dá)幾mg的偏移。為了減輕這種影響,建議PCB焊盤圖案、導(dǎo)熱片和銅走線導(dǎo)熱路徑采用對(duì)稱布局。嚴(yán)格遵守ADXL355數(shù)據(jù)手冊(cè)中提供的焊接指南。我們還發(fā)現(xiàn),在某些情況下,在校準(zhǔn)前實(shí)施焊料退火或熱循環(huán)可以幫助緩解應(yīng)力累積和幫助管理長(zhǎng)期穩(wěn)定性問題。

灌注材料

灌注材料廣泛用于將電子器件固定在外殼內(nèi)。如果傳感器封裝采用的是二次成型塑料,例如連接盤網(wǎng)格陣列(LGA),則不建議使用灌注材料,因?yàn)樗鼈兊臏囟认禂?shù)(TC)與外殼材料不匹配,會(huì)導(dǎo)致壓力直接影響傳感器,從而發(fā)生偏移。但是,ADXL355采用氣密陶瓷封裝,可以有效保護(hù)傳感器不受TC影響。但是,灌注材料可能仍會(huì)在PCB上形成應(yīng)力累積,這是因?yàn)殡S著時(shí)間流逝,材料的性能會(huì)退化,導(dǎo)致硅芯片出現(xiàn)微小翹曲,在傳感器上形成應(yīng)力。對(duì)于需要在長(zhǎng)時(shí)間內(nèi)保持穩(wěn)定性的應(yīng)用,一般建議避免使用灌注。低應(yīng)力保形涂層(例如C型聚對(duì)二甲苯)可以提供一些防潮層,用于代替灌注。8

氣流、熱傳遞和熱平衡

為了達(dá)到最佳的傳感器性能,需要在溫度穩(wěn)定性得到優(yōu)化的環(huán)境中設(shè)計(jì)、放置和使用檢測(cè)系統(tǒng),這非常重要。如本文所示,由于傳感器裸片上存在溫差熱應(yīng)力,即使微小的溫度變化也可能導(dǎo)致意想不到的后果。以下是一些建議:

■   應(yīng)將傳感器置于PCB上,以最大限度降低傳感器上的熱梯度。例如,線性穩(wěn)壓器會(huì)產(chǎn)生大量熱量;所以,它們?cè)诮咏鼈鞲衅鲿r(shí),會(huì)在MEMS上產(chǎn)生熱梯度,并且熱梯度將會(huì)隨著穩(wěn)壓器的電流輸出不同而變化。

■   盡可能將傳感器模塊部署在遠(yuǎn)離氣流(例如HVAC)的區(qū)域,以避免頻繁的溫度波動(dòng)。如果不可行,在封裝外部或內(nèi)部采取熱隔離會(huì)大有幫助,可以通過熱絕緣實(shí)現(xiàn)。注意,傳導(dǎo)和對(duì)流熱路徑都需要考慮。

■   建議選擇外殼的熱質(zhì)量,使其可以在無法避免環(huán)境熱變化的應(yīng)用中抑制環(huán)境熱波動(dòng)。

結(jié)論

本文闡述了在未充分考慮環(huán)境和機(jī)械影響的情況下,高精度ADXL355加速度計(jì)的性能會(huì)如何下降。通過整體的設(shè)計(jì)實(shí)踐,同時(shí)關(guān)注系統(tǒng)級(jí)配置,敏銳的工程師可以獲得出色的傳感器系統(tǒng)性能。我們?cè)S多人都承受著前所未有的生活壓力,但永遠(yuǎn)不會(huì)壓倒我們,重要的是面對(duì)壓力我們?nèi)绾螒?yīng)對(duì),加速度計(jì)也是這樣,認(rèn)識(shí)到這一點(diǎn)非常重要。

參考資料

1    Chris Murphy。“為應(yīng)用選擇最合適的MEMs加速度計(jì)——第一部分。” 《模擬對(duì)話》,第51卷,第4期,2017年10月。

2   Chris Murphy。“溫度變化及振動(dòng)條件下使用加速度計(jì)測(cè)量?jī)A斜。”《模擬對(duì)話》,2017年8月

3   SDP-K1評(píng)估系統(tǒng)。ADI公司

4   Mbed: SDP-K1用戶指南。ADI公司

5   PanaVise鉸接式托架。PanaVise。

6   Mbed代碼。ADI公司

7   Weller 6966C熱風(fēng)/冷風(fēng)槍。Weller。

8   Parylene。維基百科。

作者簡(jiǎn)介

Mahdi Sadeghi是ADI公司AIN技術(shù)部的MEMS產(chǎn)品應(yīng)用工程師。他于2014年獲得密歇根大學(xué)安娜堡分校的電氣工程博士學(xué)位。他的博士論文,以及作為無線集成微系統(tǒng)工程研究中心(ERC WIMS)的研究員開展工作時(shí),主要是為無人機(jī)和自動(dòng)汽車平臺(tái)開發(fā)傳感微系統(tǒng)。他擁有微液壓傳感器和驅(qū)動(dòng)器、微流體系統(tǒng)、適用于可穿戴設(shè)備的慣性傳感系統(tǒng)設(shè)計(jì),以及狀態(tài)監(jiān)控應(yīng)用的傳感解決方案等相關(guān)經(jīng)驗(yàn)。

Paul Perrault是一名高級(jí)現(xiàn)場(chǎng)應(yīng)用工程師,工作地點(diǎn)在加拿大卡爾加里。他在ADI公司工作了17年,負(fù)責(zé)過100多種CPU放大器電源設(shè)計(jì)以及nA級(jí)傳感器節(jié)點(diǎn)和節(jié)點(diǎn)間所有電流電平設(shè)計(jì)。他擁有加拿大薩斯喀徹溫大學(xué)電氣工程理學(xué)學(xué)士學(xué)位以及波特蘭州立大學(xué)電氣工程碩士學(xué)位。業(yè)余時(shí)間,他喜歡在鄉(xiāng)間滑雪、在落基山石灰?guī)r上攀巖、去當(dāng)?shù)氐纳角鹋郎?,并與年輕的家人一起在戶外度過美好時(shí)光。



關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉