從USB如何獲得高效的雙軌電源?
設(shè)計5V以外電源的小功率USB電路時,您必須確定是使用獨立電池,還是使用來自主機(jī)的小型電源。如果電路需要大于5V的雙軌電源(如采用了基于運放的儀表放大器),或必須用于便攜計算機(jī)如筆記本電腦上,則問題就更復(fù)雜了。
本文引用地址:http://2s4d.com/article/201808/385303.htmUSB2.0標(biāo)準(zhǔn)規(guī)定了對連接設(shè)備的功率要求,即耗電最大100mA,視為小功率;耗電最大500mA,則視為大功率。本文所述電路原用于一個熱致發(fā)光(TL)儀器設(shè)計,設(shè)計中的微控制器、USB接口控制器,以及10個運放均作為小功率器件,從一個USB端口獲得全部電源。
設(shè)備的運行需要有高性能、低噪聲拾取,使系統(tǒng)射頻輻射盡可能低。在搭建電路以前,做過仿真與驗證,然后用于TL系統(tǒng)。本設(shè)計的吸引力在于,由于它采用的是常見元器件,提高了可重復(fù)性,同時降低了成本。
電路運行原理基于反激概念(圖1),運行期間,一只小型變壓器受一只脈沖調(diào)制555非穩(wěn)電路的驅(qū)動,工作頻率在115kHz~300kHz。高工作頻率可以使電路的整體尺寸較小,同時提供相對較高的功率輸出以及良好的調(diào)節(jié)性,使輸出濾波更容易做到低紋波。
實際電路中用一只MOSFET來實現(xiàn)開關(guān)。圖1中,二極管對正的VOUT表現(xiàn)為正偏。將二極管和一個變壓器繞組極性反向,就獲得一個負(fù)的VOUT。電路工作在三個不同的相位。在相位一,開關(guān)閉合,因電流流過變壓器初級,能量以磁場形式存儲起來。二極管反偏,次級沒有電流流過。
在相位二,開關(guān)打開,二極管變成正偏,能量從磁場傳送給電容C。在相位三,能量的轉(zhuǎn)儲完成,在開關(guān)漏源電容中存儲的任何剩余電荷都被完全釋放。然后重復(fù)這個循環(huán)。
為更好地解釋電路的工作原理,比較簡單的辦法是假定恰在時間t=0以前,濾波器電容已經(jīng)放電到標(biāo)稱輸出電壓,而通過變壓器初級線圈的電流為零。t=0時,開關(guān)閉合,電流開始流經(jīng)初級線圈。這樣就會在次級線圈上產(chǎn)生一個電壓,極性如圖1所示。由于二極管是反偏,因此沒有次級電流流過,次級線圈相當(dāng)于開路。變壓器初級端的作用就好比一個簡易裝的電感器。初級電流呈線性增加,公式如下:
在開關(guān)閉合期間,次級線圈上的感應(yīng)電壓為nVCC。因此,二極管必須承受的最小反偏電壓為(nVCC+VOUT)。過了既定時間后,開關(guān)打開。在實際電路中,這相當(dāng)于MOSFET被關(guān)閉。假設(shè)初級線圈中的電流在該時刻為IPK,則電感器中存儲的磁場能量就等于:
由于初級線圈與次級線圈之間的磁通量,當(dāng)初級電路開路時,電感器中存儲的但正在崩潰的磁場在次級端中感應(yīng)出了足夠高的電壓(>VOUT),使二極管正偏。電流的初始值為I2=IPK/n。在二極管正偏期間,次級線圈上的電壓將為(VOUT+0.7)。這也可以看作初級端電壓向下變換為VOUT/n。因此,當(dāng)開關(guān)打開時,它必須承受的實際電壓是:
這個公式強(qiáng)調(diào)了反激轉(zhuǎn)換器相對于有相當(dāng)輸入輸出電壓的升壓轉(zhuǎn)換器的優(yōu)勢,即當(dāng)開關(guān)打開時,降低了它必須承受的電壓。事實上,“關(guān)斷”周期的電壓降低到一個值,該值由變壓器線圈匝數(shù)比確定。這樣就可以使用較低擊穿電壓的MOSFET。另外,在升壓轉(zhuǎn)換器拓?fù)渲校O管必須同時承受“開啟”時的高電流,以及“關(guān)斷”時的高反向電壓。而在反激轉(zhuǎn)換器中,次級端的二極管在電流較低時(IPK/n),需要承受高電壓。這樣就允許使用較小電容的二極管,從而獲得較快的開關(guān)速度,因而減少了能耗,提高了效率。
雖然這超出了我們的電流范圍,您仍可以計算輸出電壓,方法是讓L1中的能量輸入量等于傳送給負(fù)載RLOAD的能量。穩(wěn)態(tài)時,輸出與開關(guān)的占空比D以及開關(guān)工作的頻率有關(guān),即開路輸出電壓公式為:
在圖2的實際電路中,可以找到圖1基礎(chǔ)反激電路的所有元件。不過,這里做了一些微調(diào),以實現(xiàn)更好的運行穩(wěn)定性。例如,配置兩只輸出二極管,這樣就可以獲得雙軌輸出。另外,正電壓軌反饋由R4和R5構(gòu)成的分壓器采樣,其電平由電容C2做平順。普通的555非穩(wěn)態(tài)工作時也可能產(chǎn)生輸出波形,這是由于時序電容(C1)通過R1和R2的和,從VCC充電,并通過R2放電。在所使用的電阻值(即R2>>R1)下,占空比接近50%。充電/放電電壓被內(nèi)部設(shè)定為VCC/3和2VCC/3(即,如果在5V下運行,則分別為1.67V和3.33V)。沒有反饋時,圖2中給出的開環(huán)輸出電壓約為20V。
反饋工作原理如下:晶體管Q1關(guān)斷,直到其基極電壓(VBE)約為0.55V。這樣,輸出電壓可依照以下公式計算:
由于反激的作用,輸出電壓持續(xù)升高,Q1被驅(qū)動得更厲害,使其集電極電壓下降。由于集電極連接到555定時器的控制輸入端,其標(biāo)稱的上限約為(2VCC/3),于是使電容以相同的速率充放電,但處于一個狹窄的電壓區(qū)間。其效果是,同時減小了用于驅(qū)動MOSFET開關(guān)的輸出脈沖的開關(guān)次數(shù)。頻率與占空比(D)上的凈變動使VOUT下降,最終降低了反饋電壓,也減少了Q1的“導(dǎo)通”時間。
電路需謹(jǐn)慎設(shè)置的其中一項是反激變壓器。經(jīng)過測試,多款自制變壓器的工作性能良好。最終確定的方案是重新使用一個RFI抑制電感的磁芯,它主要出現(xiàn)在電視機(jī)開關(guān)電源的電源輸入端。變壓器初級采用多股繞線,以減少串聯(lián)電阻。例如,使用四股0.3mm絕緣銅線,緊密纏繞七匝,所得初級電感為30μH,測得電阻為0.03Ω。較低的線圈電阻減少了電感器在開關(guān)時產(chǎn)生的焦耳熱,從而達(dá)到更高的效率。RS-Electronics(RS庫存號647-9446,由Epcos生產(chǎn))現(xiàn)有一款適用的、市場上可以買到的鐵氧體磁芯和繞線骨架套件。
評論