新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應用 > 耳機放大器架構(gòu)設(shè)置全新解決方案

耳機放大器架構(gòu)設(shè)置全新解決方案

作者: 時間:2017-10-22 來源:網(wǎng)絡(luò) 收藏

  伴隨DVD、MP3、MP4、智能手機等越來越多的便攜式音頻設(shè)備的出現(xiàn),這些設(shè)備的電路板設(shè)計空間越來越不足。現(xiàn)今,根據(jù)特定功能設(shè)計解決方案的尺寸,在預期功能的條件下將需要的組件數(shù)量降到最低,顯得越來越重要。將音頻信號傳輸?shù)蕉鷻C,一直以來都使用DC 阻隔電容,除此之外,其他替代的解決方案,不是有先天的限制,就是過于簡單化而不切實際需求,不被市場認可與接受。

本文引用地址:http://2s4d.com/article/201710/367322.htm

  本文特別著重在架構(gòu),除了說明其優(yōu)缺點,也介紹全新的解決方案,該解決方案可解決某些架構(gòu)所造成的問題。

  不同的配置

  不采用大型 DC 阻隔電容驅(qū)動耳機的其中一種傳統(tǒng)方法,是將連接器的接地接腳偏移到中軌,也就是 VDD/2 (VBIAS)。由于大多數(shù)消費性耳機放大器都是單一供應電源,因此,要達到良好的動態(tài)范圍,唯一的方法是以 DC 將音頻偏移到 VDD/2,使信號能擺蕩到接地及 VDD。由于接地接腳連接 VDD/2,因此其中主要的缺點是,只要連接 到Hi-Fi 放大器或以電源驅(qū)動的喇叭等接地為真實接地 (亦即 0V) 的外部設(shè)備,就會造成接地回路問題,并引發(fā)不必要的噪聲或設(shè)計問題。

  

  圖 1. 含偏移接地套管的輸出單端耳機放大器

  如圖 1 所示,最傳統(tǒng)的耳機放大器架構(gòu)是含 DC 阻隔電容的單端放大器。

  

  圖 2. 含 DC 阻隔電容的單端耳機放大器

  從中可看出,耳機驅(qū)動的輸出偏移到 VDD/2 (VOUT),而音頻從 VDD 擺蕩到接地。其中需要 DC 阻隔電容,才能將移除此偏壓,讓訊號在接地周圍有效擺蕩,也就是在 –VDD/2 至 +VDD/2 之間擺蕩。此架構(gòu)的優(yōu)點是能夠使用標準的耳機接孔,然而,這類方法的主要問題在于低頻率響應。耳機阻抗一般是 16Ω 或 32Ω,而輸出電容及耳機喇叭阻抗兩者會形成高通濾波,其截止頻率為 3dB,如等式 1 所示:

  

 ?。ǖ仁?1)

  截止頻率必須在耳機的音頻頻帶范圍內(nèi),此頻帶會因制造商的不同而有所差異,但一般的范圍是 20Hz 至 20kHz 之間。為了不使低音頻頻率衰減,高通濾波的截止頻率至少必須大約是 500Hz 以下。

  將等式 1 改寫為等式 2,即得出:

  

  (等式 2)

  對于 100Hz 的截止頻率及 16Ω 的耳機喇叭阻抗,電容必須是 110μF。對于需要小體積尺寸的情況而言,這會造成電容值及實體尺寸過大,而且使得成本過高。許多工程人員只能改用 22μF 的較小電容,不過這會影響耳機的低頻率傳真度,而導致低音響應不佳。

  各種執(zhí)行都有其優(yōu)缺點,不過,對于需要較佳音頻并避免潛在接地回路問題或大型 DC 阻隔電容的設(shè)計人員而言,一種稱為接地置中或「無電容」的較新架構(gòu)開始備受矚目。

  TPA4411、TPA6130A2 及 TPA6132A2 等由德州儀器提供的接地置中或 DirectPathTM 耳機放大器使用創(chuàng)新的做法來省卻通常使用的 DC 阻隔輸出電容。其做法并非將音頻偏移至裝置內(nèi)的 VDD/2,而是整合了一顆電荷泵并提供一組負電源軌,進而讓耳機放大器在正電源軌 (VDD) 與負電源電壓 (VSS) 之間擺蕩。這完全不需要任何偏移,因此不再需要輸出的高通濾波。這能夠讓耳機喇叭播放整個音頻頻帶,提供更好的音質(zhì)。

  

  圖 3. 含整合式電荷泵的接地置中 DirectPathTM 耳機放大器

  圖 4 顯示該高通濾波器的頻率響應如何隨著不同的 DC 阻隔電容產(chǎn)生變化。對于 16Ω 的固定負載阻抗,只要改變輸出 DC 阻隔電容,截止頻率便會隨之變動。結(jié)果是當電容值減小,截止頻率就會提高,而且越少音頻低音內(nèi)容能被傳輸?shù)蕉鷻C喇叭。

  

  圖 4. 輸出頻率響應比較

  這種做法看起來很理想,不過,由于整合式電荷泵的低效運作,相較于含偏移接地套管或大型 DC 阻隔電容的傳統(tǒng)耳機放大器,接地置中耳機放大器會耗用較多的電源,而略微縮短系統(tǒng)的電池使用時間。為解決這個問題的創(chuàng)新做法是使用改良的 Class-G技術(shù)。

  Class-G 技術(shù)

  在 AB 類放大器的接地置中架構(gòu)做法中,放大器總是以最高電源電壓運作,這表示,對于音頻的無噪聲階段而言,整個輸出 FET 的電壓降幅相當大。以鋰離子電池為例,一般的電池電壓范圍是 3.0V 至 4.2V。假設(shè)電池供應 3.6V 的電壓,圖 5 的紅色箭頭表示播放輸出音頻時整個輸出 FET 的電壓降幅。

  

  圖 5. AB 類接地置中耳機放大器運作

  假設(shè)放大器的靜態(tài)電流相較于流向負載的電流來說非常地小,即可推算電池電流與輸出電流呈正比。

  

 ?。ǖ仁?3)

  圖 6 顯示 AB 類接地置中耳機簡易示意圖。隨著音頻的變化,整個輸出 FET 的電壓降幅也會變動。裝置的功率損耗是電壓降幅乘以電池電流 (IBATT) 所得的乘積。

  

  圖 6. AB 類接地置中耳機示意圖

  G 類放大器一般使用多個電源電壓,以發(fā)揮比 AB 類放大器更高的效率。在本例中,TI 最新的 G 類 DirectPath 放大器 (TPA6140A2) 首先將電池電壓降低至較低的電壓值,然后切換至低信號強度的低供應電壓 (1.3V),并且只有在信號強度超出該低電源電壓軌時,才切換至較高的電源電壓 (1.8V)。這些適應性電源電壓軌的升降速度高于音頻,因此可避免失真或削波。此外,由于一般聆聽的音頻低于 200mVRMS,因此電源電壓通常是最低值 (亦即 1.3V),并且提供優(yōu)于上述 AB 類放大器的效率。在音頻的無噪聲階段期間,整個電源軌的電壓會降低,而且信號相當小。當音頻變得大聲時,放大器會切換至較高的電源軌,然后切換回較低的電源軌,導致整個輸出 FET 的電壓降幅縮小。圖 7 的紅色箭頭表示此電壓降幅。

  

  圖 7. G 類接地置中耳機放大器運作

  其中的技巧是設(shè)計將電池電壓降低至較低電壓的放大器,并使用適應性電源軌 (分別有負電源軌) 降低播放音樂時整個輸出 FET 的電壓降幅。其中一種實現(xiàn)這類放大器的方式是,使用電荷泵作為圖 8 所示的步降區(qū)塊。某些工程人員偏好這類做法,原因在于步降電荷泵僅需要相對較小的飛馳電容(flying capacitor) (1μF 至 2.2μF),而這也是相對較小的組件

  

  圖 8. 含電荷泵步降轉(zhuǎn)換器的 G 類接地置中耳機簡化示意圖

  這類解決方案的主要缺陷是電荷泵的效率極差,而且這類解決方案無法令電池使用時間延長。較好的做法是整合 DC/DC 步降轉(zhuǎn)換器,以有效降低裝置的內(nèi)部電源電壓,并減少電池電流。

  

  圖 9. 含 DC/DC 步降轉(zhuǎn)換器的 G 類接地置中耳機簡化示意圖


  圖 9 顯示 G 類接地置中耳機簡化示意圖。假設(shè)放大器的靜態(tài)電流遠小于流向負載的電流,即可推估電池電流是輸出電流的分數(shù) (見等式 4)。同樣地,隨著音頻的變化,整個輸出 FET 的電壓降幅也會變動。此裝置的功率損耗是電壓降幅乘以電池電流 (IBATT) 的分數(shù) (VDD/VBATT) 所得的乘積,因此,此裝置將散失較少的功率。

  

 ?。ǖ仁?4)

  使用此解決方案的 G 類 DirectPath 耳機放大器為 TPA6140A2。此解決方案需要將外部電感用于步降轉(zhuǎn)換器,但是,由于輸出電流相當小,而且降壓轉(zhuǎn)換器的切換頻率相對較高,因此可使用相當小的芯片電感,也就是 2.2uH 、 800mA 的 0805 尺寸電感。這能夠使解決方案的效率提高,而沒有上述電荷泵方法的電路板空間不足的缺點。

  AB 類及G 類接地置中架構(gòu)的電池使用時間比較

  為證實 G 類 DirectPath 耳機放大器的效率優(yōu)于傳統(tǒng) AB 類解決方案,我們在實驗室進行了一項測試。圖 10 是一般接地置中耳機與 TPA6140A2 的比較。其中,兩個放大器都接上充滿電力的鋰離子電池。音頻輸入來自 PC,而輸出驅(qū)動各個 32Ω 耳機。兩個放大器持續(xù)播放相同的音頻,而且以固定間隔測量電池電壓。

  下圖的 Y 軸表示電池電壓,X 軸表示時間。綠線表示一般的接地置中耳機放大器,藍線表示 G 類耳機放大器。

  

  圖 10. AB 類與 G 類接地置中耳機放大器的比較

  相較于 AB 類 DirectPath 實作,TPA6140A2 可延長 50 小時或 45% 的電池使用時間。

  對于耳機放大器效率而言,必須考慮整體的系統(tǒng)功耗。舉例來說,當今耳機的輸出功耗遠低于 MP3 編譯碼器的功耗。在未來,當這類編譯碼器功能提升到下一個制程技術(shù)節(jié)點時,該功能的功耗將進一步降低,但耳機放大器的輸出功耗需求則不會降低。這表示,耳機放大器的效率將在下一代平臺中扮演更重要的角色。圖 11a 至 11b 闡明了這一點:

  

  圖 11a.當今MP3 播放電流耗用量的范例

  

  圖 11b.兩年后 MP3 播放電流耗用量的范例

  圖 11a 顯示 G 類耳機放大器的平均電流耗用量大約是應用處理器的 10%。然而,幾年后,當應用處理器電流降低至大約 10mA 時,G 類耳機放大器的電流耗用量將約為 現(xiàn)在的30%。

  結(jié)論

  電池使用時間一直是便攜式應用的重要課題。相比含輸出 DC 阻隔電容的傳統(tǒng) AB 類放大器,接地置中耳機放大器的音頻性能較佳,但是因為需要使用電荷泵而使得效率降低。只有在信號強度需要進行切換時,才會切換兩個以上的電壓電源軌,使得 G 類放大器能夠提升效率,也減少了不必要的功率損耗。TPA6140A2 等 G 類 DirectPath 耳機放大器結(jié)合了接地置中耳機放大器及 G 類放大器的優(yōu)點。這能夠有效降低不必要的放大器功率損耗,最終使得電池使用時間延長。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉