基于LM267X穩(wěn)壓器的正到負降壓/升壓轉(zhuǎn)換器的應(yīng)用技巧
工業(yè)、通信及個人系統(tǒng)等產(chǎn)品對穩(wěn)壓器或類似芯片的需求不斷增加,但大部分開關(guān)穩(wěn)壓器的設(shè)計除了需要專門的設(shè)計技術(shù)外,更需增加大量外置式元件才可正常工作。本文介紹LM267X系列穩(wěn)壓器在極性反相轉(zhuǎn)換器設(shè)計中的應(yīng)用技巧。
極性反相轉(zhuǎn)換器在開始工作時先將能量儲存在電感器(L)內(nèi),后通過二極管(D)將能量傳送至輸出區(qū)。開關(guān)一旦啟動,二極管便產(chǎn)生反相偏壓,電感器電流也隨即以線性方式增加。開關(guān)一旦關(guān)閉,電感器的極性將反過來,以確保開關(guān)電流可保持最高的流量。因此,二極管將產(chǎn)生正向偏壓,而儲存在電感器之內(nèi)的能量會傳送至負載及電容器。由于這類轉(zhuǎn)換器可以升高或降低輸入電壓,因此,這種集成電路也稱為降壓/升壓轉(zhuǎn)換器。
設(shè)計上的考慮
采用LM2673芯片的極性反相穩(wěn)壓器的典型配置,負輸出已接地,而反饋信號則傳送至接地,因此無需額外的電平移位以及將反饋信號加以反相,就可適當(dāng)調(diào)節(jié)負極輸出。此應(yīng)用方案也可采用可調(diào)型LM2673芯片,辦法是將反饋電阻由接地連接至輸出電壓(VOUT)(與輸出電容器并行連接)。由于這種電路的控制與輸出傳送函數(shù)的零點出現(xiàn)在右半平面,因此一般來說穩(wěn)定性較差。因此,在輸入與負
輸出之間需要采用另一比輸入電容器更小的電容器CC將之連接起來,以確保穩(wěn)壓器環(huán)路的穩(wěn)定工作,100uF或以下的小電容可以發(fā)揮器件的性能。
若輸出電流低至100mA以下,穩(wěn)壓器可以采用斷續(xù)模式工作,這樣便無需電容器CC。
若使用電容器CC,每當(dāng)供電電壓開始輸入電路時,電容器充電電流會在輸出的起始狀態(tài)出現(xiàn)正電壓尖峰,但一般來說,這個正電壓尖峰波幅太小,不會引起任何問題。
電容器初始狀態(tài)的充電電流會令電容器等效串聯(lián)電阻(ESR)的電壓下降。由于電容器CC及輸出電容器可執(zhí)行分壓器的功能,因此電壓尖峰的波幅在初始狀態(tài)由CC及輸出電容器的ESR數(shù)值所決定。輸出電容器的ESR數(shù)值一般均遠比補償電容器的ESR為低,因此初期電壓尖峰波幅很小,一般只有500mV。若傳感器直流電阻高至2V以上,而啟動電流在初始狀態(tài)也很高,尖峰也將較高。二極管D2將正輸出電壓尖峰鉗位在某一電平內(nèi),以肖特基二極管為例,電壓大約可定在300mV內(nèi)。大部份情況均無需鉗位,也無需采用D2。
選擇適用的元件
以下列出所選的電路元件及其詳細計算結(jié)果。均以連續(xù)模式工作為基準計算。
占空比的計算如下:
D=( |VOUT|+Vd ) / (VIN+|VOUT|+Vd-VSW)
在上述方程式之中:Vd=二極管正向電壓; VSW=晶體管導(dǎo)通電壓; VSW=Iswmax*RDS(on);傳感器平均電流為:
IL = IOUT/(1 - D)
采用不同方法可以計算出所需的電感量。較佳方法是將電感器紋波電流(△IL)選定在傳感器平均電流(IL)的20%與30%之間。這樣穩(wěn)壓器可在連續(xù)模式下工作,此設(shè)計的負載瞬態(tài)響應(yīng)較好,輸出紋波電壓也較理想。
因此,峰至峰電感器紋波電流(△IL)選定為:△IL=0.2至0.3*IL,所需電感為:
L= VIN*D / (f-△IL)
電感器的額定RMS電流應(yīng)等于或超過最高開關(guān)電流(Isw max),以免電感飽和。此外,電感器的額定伏秒值至少應(yīng)為:E*T= VIN/D*f
集成電路的額定參數(shù)計算
直流/直流轉(zhuǎn)換器的額定功率必須支持最高電流及電壓。
開關(guān)電流峰值為:
Isw max=IL+ △IL/2
由于芯片的接地連接輸出,芯片的額定最高輸入電壓必須支持標(biāo)稱輸入電壓及輸出電壓。
芯片的額定最高開關(guān)電壓及輸入電壓為:Vsw max=VIN+|VOUT|,功耗為:PD=VIN*Iq+(Isw max)2*RDS(on),最高的開關(guān)電流取決于占空比D及電感器數(shù)值。
二極管額定值的計算
續(xù)流二極管D1必須滿足以下參數(shù)要求:IDmax=Iswmax VDmax=VIN+|VOUT| PD=IDmax*VD*(1-D)
一般均會采用低正向?qū)妷旱男ぬ鼗O管,以便獲得理想的轉(zhuǎn)換效率。
選擇適用的輸出電容器
選擇輸出電容器時必須以其ESR數(shù)值的大小為主要的取舍標(biāo)準,且其電容必須夠大,足以在接通電源后提供負載電流。ESR數(shù)值的大小對輸出電壓紋波有決定性的影響。ESR的計算方法如下:
ESR = △VOUT/Iswmax
在以上方程式中:△VOUT=需要的輸出紋波電壓
電容器的電容必須達到某一最低的數(shù)值,才可提供所需的輸出紋波及負載電流,其計算方法如下:
COUT min= IOUT*D/f-△VOUT
選擇適用的輸入電容器
選擇輸入電容器時必須以其ESR數(shù)值及額定RSM電流為主要取舍標(biāo)準,以便為輸入的高電流轉(zhuǎn)變提供支持。
在實際應(yīng)用中,選用低ESR電容器較理想,因為它有助于減低輸入電壓紋波,及減少對同一系統(tǒng)內(nèi)的其他電路造成的干擾。至于部分對電磁干擾極為敏感的應(yīng)用方案,可考慮添加L-C輸入濾波器。
穩(wěn)定性的考慮
由于開關(guān)模式的直流/直流轉(zhuǎn)換器包含頻率響應(yīng)控制環(huán)路,因此其設(shè)計必須符合控制環(huán)路的穩(wěn)定性標(biāo)準。
由于電感數(shù)值、輸出電容和ESR以及補償電容器CC會影響穩(wěn)壓器環(huán)路的穩(wěn)定性,因此所用的轉(zhuǎn)換器必須通過穩(wěn)定性測試。
首先需要進行的穩(wěn)定性測試是檢查半導(dǎo)體開關(guān)(即LM2673芯片的輸出管腳) 的開關(guān)電壓波形。這個波形應(yīng)該是穩(wěn)定的,而且并無顫動的現(xiàn)象,如圖3和圖4的波形所示,分別采用連續(xù)及斷續(xù)工作模式。
無論輸入電壓及負載電流如何變動,如果波形仍能保持穩(wěn)定,便足以顯示這是一個穩(wěn)定的設(shè)計。
此外,要進行脈沖負載測試或量度其負載瞬態(tài)響應(yīng)。測試時,最低及最高負載之間的負載電流分別以脈沖分隔(矩形波形,快速上升時間),并利用示波器監(jiān)察輸出電壓波形。在這些情況下,輸出電壓應(yīng)該對負載電流變動做出穩(wěn)定而并無任何振蕩的響應(yīng)。這些測試必須反復(fù)驗證以證明無論輸入電壓為何,輸出電壓仍然做出同樣的響
應(yīng)。
若進行測試時穩(wěn)壓器出現(xiàn)穩(wěn)定性的問題,輸出電容器及/或補償電容器CC必須隨即更換。對于采用LM267X芯片的反相降壓/升壓應(yīng)用方案來說,電容器CC的電容值越高,系統(tǒng)穩(wěn)定性便越高。
啟動問題
即使輸入電壓低至5V,LM267x系列開關(guān)穩(wěn)壓器仍可充分利用降壓/升壓設(shè)計的優(yōu)點,雖然開關(guān)穩(wěn)壓器通常均規(guī)定輸入電壓VIN最低必須為6.5V,但這款集成電路的內(nèi)置式5V穩(wěn)壓器可以為芯片提供內(nèi)部偏壓。
由于芯片的接地連接輸出,因此輸入電壓VIN至接地之間的實際電壓是輸入電壓加輸出電壓的總和,一般來說這個總和會超過8V。由于在初始狀態(tài)芯片的輸入為5V以便啟動芯片,一旦輸出變?yōu)樨撾妷?,芯片的輸入電壓最后會升高至等于輸入電壓與輸出電壓的總和(VIN+ VOUT),電壓總和超過6.5V,符合相關(guān)技術(shù)標(biāo)準。
反相穩(wěn)壓器在啟動時通常需要高峰值輸入電流。若使用這款開關(guān)穩(wěn)壓器芯片的軟啟動功能,便可將高峰值輸入電流減至最低。
本文總結(jié)
以下所示的每一個系統(tǒng)幾乎全部都需要在電路板上加設(shè)穩(wěn)壓器或類似的芯片,而且其中不少系統(tǒng)還需要加設(shè)轉(zhuǎn)換器以提高系統(tǒng)效率。但大部分開關(guān)穩(wěn)壓器的設(shè)計均需要專門的設(shè)計技術(shù),而且還要加設(shè)多達十四個外置式元件才可正常工作。本文介紹的高集成度芯片所需外置式元件只有四個,而且已免費預(yù)裝Switchers Made Simple軟件,使應(yīng)用廠商無需專門的設(shè)計技術(shù)也可開發(fā)開關(guān)穩(wěn)壓器。這可以確保設(shè)計工程師在短短數(shù)日內(nèi)便能完成高性能開關(guān)電源的設(shè)計。因而在筆記本型計算機、臺式計算機、手持式設(shè)備、LCD/TFT監(jiān)視器、打印機、掃描儀、上網(wǎng)設(shè)備等領(lǐng)域獲得廣泛的應(yīng)用。
評論