高精度A/D在測磁設(shè)備中的應(yīng)用
1 AD676的結(jié)構(gòu)特點
在對艦船磁場的測量過程中,由于艦船的運動姿態(tài)不斷變化,使艦船磁場投影到各分量的強(qiáng)度也不斷變化。為實現(xiàn)對艦船磁場的動態(tài)測量,因此,磁場測量必須快速而準(zhǔn)確。選用87C51單片機(jī)擴(kuò)展內(nèi)置微控制器的高速16位A/D轉(zhuǎn)換器AD676能很好地滿足這一要求。
AD676的內(nèi)部結(jié)構(gòu)如圖1所示。由兩個單片部分組成,即數(shù)字控制單片和模擬ADC單片。數(shù)字控制單片是用DXPCMOS工藝制造,而模擬ADC單片是用BIMOSⅡ工藝制造的。該器件是使用逐次逼近技術(shù)來實現(xiàn)A/D轉(zhuǎn)換的,但內(nèi)部沒有傳統(tǒng)的電阻梯網(wǎng)絡(luò),取而代之的是電容陣列。AD676是采用帶二進(jìn)制權(quán)值的電容器將輸入的采樣信號進(jìn)行分配以實現(xiàn)模擬到數(shù)字的轉(zhuǎn)換的。采用電容陣列帶來了三方面的好處:
(1).達(dá)到了100KSPS的高速轉(zhuǎn)換率(總的轉(zhuǎn)換時間為10μS);
(2).消除了傳統(tǒng)的電阻網(wǎng)絡(luò)因電阻值隨溫度變化所引起的誤差;
(3).在不需增加外部電路的情況下,電容陣列實現(xiàn)了采樣保持功能。
但是,電容陣列具有初始誤差,內(nèi)部微程序控制器是專為消除電容陣列的初始誤差而
設(shè)計的。微程序控制器通過DAC來檢測電容陣列的匹配誤差,并把所檢測到的誤差存放在內(nèi)部數(shù)據(jù)存儲器RAM中,在初始采集數(shù)據(jù)之前,要使AD676進(jìn)行一次自動校準(zhǔn),在以后的轉(zhuǎn)換中,微程序控制器便使用RAM中的值來校準(zhǔn)轉(zhuǎn)換所得的數(shù)字量而改善轉(zhuǎn)換精度。因此,AD676不需用戶校準(zhǔn)或調(diào)整,能自動保持器件的高性能。
AD676內(nèi)部的所有功能,包括實際的逐次逼近算法、自動校準(zhǔn)、采樣保持操作、內(nèi)部數(shù)據(jù)的輸出鎖存都是在微程序控制下進(jìn)行的。應(yīng)用中,不需用戶增加額外的硬件和軟件開銷,給用戶帶來了很大的方便。
2 AD676的主要性能
(1).16位無丟失碼
(2).轉(zhuǎn)換速率100KSPS(總的轉(zhuǎn)換時間為10μS)
(3).自動非線性校準(zhǔn)
(4).積分非線性誤差(1NL)士1LSB
(5).總的諧波失真(THD)0.002%
(6).片內(nèi)具有采樣—保持功能
(7).滿功率帶寬1MHz.
(8).輸入模擬信號范圍士Vref
(9).供電范圍:Vdd = +5V士10%
Vcc = +12V士5%
Vee = -12V士5%
AD676采用28引腳DIP封裝和28引腳邊銅焊陶瓷封裝,封裝引腳見圖2。
3 AD676的時序
(1).校準(zhǔn)時序
AD676通過片內(nèi)自動校準(zhǔn)過程不需用戶校對和調(diào)整便能達(dá)到規(guī)定的性能。校準(zhǔn)過程只需在初始采集數(shù)據(jù)前進(jìn)行一次即可,校準(zhǔn)時序見圖3。
當(dāng)給CAL加高電平時,AD676內(nèi)部復(fù)位,BUSY輸出高電平,表明AD676已作好校準(zhǔn)的準(zhǔn)備。當(dāng)給CAL加低電平時,校準(zhǔn)過程開始,校準(zhǔn)時間為85530個時鐘周期,完成校準(zhǔn)的標(biāo)志為BUSY變?yōu)榈碗娖?。在大多?shù)應(yīng)用場合下,僅在上電時有充分的時間對AD676進(jìn)行校準(zhǔn),所以要特別注意,應(yīng)等到電源和電壓基準(zhǔn)穩(wěn)定以后才能開始進(jìn)行校準(zhǔn)。
(2).一般的轉(zhuǎn)換時序
轉(zhuǎn)換由輸入信號采集過程和16位內(nèi)部逐次逼近過程組成。
輸入信號采集過程:將SAMPLE線保持高電平狀態(tài),保持時間ts≥2μS,再將SAMPLE線變?yōu)榈碗娖剑琒AMPLE下降沿所對應(yīng)的輸入電壓值Vin即為實際采樣值。SAMPLE為低電平后,輸入Vin與內(nèi)部電容陣列斷開,輸入信號采樣過程結(jié)束。值得注意的是采樣期間AD676忽略掉輸入的時鐘脈沖,應(yīng)用中為防止輸入時鐘脈沖對輸入信號干擾,采樣期間最好切斷時鐘脈沖的輸入。
16位逐次逼近轉(zhuǎn)換過程:在SAMPLE線變?yōu)榈碗娖絫sc時間后(tsc≥50nS)的17個時鐘脈沖內(nèi),AD676完成16位逐次逼近轉(zhuǎn)換過程,轉(zhuǎn)換期間BUSY變?yōu)楦唠娖?,轉(zhuǎn)換結(jié)束BUSY變?yōu)榈碗娖健.?dāng)BUSY變?yōu)榈碗娖胶?,?shù)據(jù)被輸出到BITl―BITl6引腳上,并一直保持到下一次轉(zhuǎn)換開始。因此,在BUSY變?yōu)榈碗娖胶蟮较乱淮无D(zhuǎn)換開始前的任何時刻都可以讀出本次轉(zhuǎn)換的結(jié)果數(shù)據(jù)。
4 AD676在測磁設(shè)備中的應(yīng)用
已成功地將AD676應(yīng)用于艦船磁場高速數(shù)據(jù)采集系統(tǒng)中,這里介紹該系統(tǒng)中AD676與87C51單片微機(jī)的接口電路,接口電路如圖5所示。圖中將信號處理部分電路、電源處理部分電路及外圍電路等省去,旨在著重說明AD676的使用方法。
87C51單片微機(jī)內(nèi)帶4K字節(jié)的程序存儲器EPROM。當(dāng)不需進(jìn)行外部程序存儲器擴(kuò)展和數(shù)據(jù)存儲器擴(kuò)展時,87C51的4個8位并行口P0、P1、P2、P3全歸用戶使用。因此用87C51與AD676接口,可設(shè)計出體積小、耗電省的艦船磁場高速高精度數(shù)據(jù)采集設(shè)備。也適用于對體積、功耗、速度和精度要求都很苛刻的場合。如油井探測、地震數(shù)據(jù)采集、貴重物重量測量及其它高精度測量儀器。
AD676的輸出不具備三態(tài)功能,但其輸出邏輯與CMOS和TTL兼容。因此可直接把AD676的BIT1―BIT16與87C51的P0口和P2口相接。若將AD676與8031接口,則應(yīng)擴(kuò)展兩個8位的輸入口,再將AD676的BIT1―BIT16經(jīng)輸入接口引到8031的數(shù)據(jù)總線(P0口)上。校準(zhǔn)控制CAL和轉(zhuǎn)換控制SAMPLE可接到P1或P3口的任一位上。例如由P3.0控制校準(zhǔn)CAL,由P3.1控制轉(zhuǎn)換SAMPLE,轉(zhuǎn)換結(jié)束信號BUSY接外部中斷INT0。BUSY還控制時鐘脈沖信號的輸入,如5圖所示,當(dāng)BUSY為低電平時,計數(shù)器74LS90將停止工作。圖中AD587提供10V的電壓基準(zhǔn)。若采用5V的電壓基準(zhǔn),只要用AD586替代AD587即可。
由以上分析,不難編寫出AD676校準(zhǔn)程序和數(shù)據(jù)采集轉(zhuǎn)換程序。校準(zhǔn)程序段如下:
CLR P3.1;將SAMPLE保持低電平
SETB P3.0;作校準(zhǔn)準(zhǔn)備
CLR P3.0;開始校準(zhǔn)
JB P3.2,$ ;等待校準(zhǔn)
數(shù)據(jù)采集轉(zhuǎn)換過程可采用查詢方式或中斷方式編寫,采用查詢方式編寫的程序段如下:
SETB P3.1;接通Vin給電容陣列充電
NOP
NOP;等待2μs
CLR P3.1;啟動轉(zhuǎn)換
JB P3.2,$;等待轉(zhuǎn)換
MOV @R0,P2;存放高8位數(shù)據(jù)
INC R0
MOV @R0,P0;存放低8位數(shù)據(jù)
…
5 結(jié)束語
本文設(shè)計的AD676應(yīng)用方法能充分發(fā)揮其內(nèi)部的各項功能。如利用內(nèi)部電容陣列在不外接采樣保持器的情況下便能對艦船磁場進(jìn)行動態(tài)測量、利用內(nèi)置的微控制器在測量前進(jìn)行校驗便能獲得很好的線性度。利用其所具有的高分辨率能獲得很高的測量精度。AD676的應(yīng)用簡化了電路設(shè)計,降低了制作成本,并有效地提高了艦船磁場測量系統(tǒng)的性能。
評論