新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 基于STM8單片機的CMOS圖像采集系統(tǒng)應(yīng)用設(shè)計

基于STM8單片機的CMOS圖像采集系統(tǒng)應(yīng)用設(shè)計

作者: 時間:2016-12-08 來源:網(wǎng)絡(luò) 收藏

位信號、發(fā)送地址、發(fā)送數(shù)據(jù)、接收數(shù)據(jù),所有的時序信號都是通過對單片機硬件I2C內(nèi)部寄存器的操作實現(xiàn)的。I2C模塊主要功能函數(shù)如下:

本文引用地址:http://2s4d.com/article/201612/327754.htm

(1)讀取圖像傳感器內(nèi)部寄存器的值

unsigned char I2C_Read(unsigned char slave—address,unsigned charreg address,unsigned char slave_read_address)

/* slave_address是圖像傳感器的地址+寫操作符“0”,reg_address是圖像傳感器內(nèi)部寄存器的地址,slave_read_address是圖像傳感器的地址+讀操作符“1”*/

{

unsigned char val;

I2C_Start();//啟動I2C總線,I2C_CR2寄存器最低位置l

I2C_SendDAdr(slave_address);//發(fā)送圖像傳感器的地址+寫操作符“0”

I2C_SendDat(reg_address);//發(fā)送內(nèi)部寄存器的地址

I2C_Start();//啟動I2C總線,I2C_CR2寄存器最低位置1

I2C_SendDAdr(slave_read_address);//發(fā)送圖像傳感器的地址+讀操作符“1”

vai=12C_RcvDat();//從I2C接口讀取數(shù)據(jù)

I2C_stop();//釋放I2C總線,I2C_CR2寄存器次低位置1

retunl val;

}

(2)讀取圖像傳感器內(nèi)部寄存器的值

unsigned char I2C_Main(unsigned char slave_address,unsigned charreg_address,unsigned char write_data)

{

/* slave_address是圖像傳感器的地址+寫操作符“0”,reg_address是內(nèi)部寄存器的地址,write_data是要寫入寄存器的數(shù)據(jù)*/

I2C_Start();//啟動I2C總線,I2C_CR2寄存器最低位置1

I2C_SendDAdr(slave_address);//發(fā)送圖像傳感器的地址+寫操作符“0”

I2C_SendDat(reg._address);//發(fā)送內(nèi)部寄存器的地址

I2C_SendDat(write_data);//發(fā)送內(nèi)部寄存器要寫入的數(shù)據(jù)

I2C_stop();//釋放I2C總線,I2C_CR2寄存器次低位置1

}

3.2.3 圖像數(shù)據(jù)的采集

單片機通過SPI協(xié)議采集CMOS圖像傳感器的圖像數(shù)據(jù)。SPI總線是一種同步串行外設(shè)接口,允許MCU與各種外圍接口器件以串行方式進行通信。SPI總線一般采用4根線:串行時鐘線SCK、主機輸入從機輸出數(shù)據(jù)線MISO、主機輸出從機輸入數(shù)據(jù)線MOSI、低電平有效的使能信號線SS。因為在系統(tǒng)的SPI數(shù)據(jù)傳輸過程中,單片機只采集圖像傳感器的數(shù)據(jù),沒有向圖像傳感器的數(shù)據(jù)輸出,所以系統(tǒng)選用SPl只接收模式,這樣只需要一根串行時鐘線SCK和一根主機輸入從機輸出數(shù)據(jù)線MISO即可,節(jié)省硬件資源。

SPI接口的最大特點是由主設(shè)備時鐘信號的出現(xiàn)與否來決定主從設(shè)備之間的通信。在從設(shè)備被使能時,一旦檢測到主設(shè)備的時鐘信號,數(shù)據(jù)開始傳輸,時鐘信號無效后,傳輸結(jié)束。在系統(tǒng)中,單片機作為主設(shè)備,圖像傳感器作為從設(shè)備,圖像傳感器在時鐘的下降沿變數(shù),單片機在時鐘的上升沿采集數(shù)據(jù),圖像傳感器接收單片機的時鐘信號SPI協(xié)議的時序如圖7所示。

圖7 SPI總線的數(shù)據(jù)傳送時序圖

機有專門的硬件SPI接口,因此可通過該接1:2采集圖像數(shù)據(jù)。圖像傳感器SPI時鐘輸入引腳連接單片機的SPI_SCK口,圖像傳感器圖像數(shù)據(jù)輸出引腳連接單片機SPI_MISO口,片選SPI_CS引腳連接單片機的普通I/O口PD7。然后對硬件SPI的參數(shù)進行配置,主要包括時鐘頻率、工作模式、主從模式、空閑時候電平狀態(tài)、觸發(fā)邊沿等,這些參數(shù)都可以通過單片機硬件SPI的內(nèi)部寄存器的配置實現(xiàn)。SPI總線讀取圖像數(shù)據(jù)的流程如下:

unsigned char spinet_byte(void)

{

while(!(SPI_SR&0x02));//等待總線空閑

SPI_DR=Oxff;//產(chǎn)生時序信號硬件SPI在且僅在發(fā)送數(shù)據(jù)的時候才產(chǎn)生SCK時鐘

while(!(SPI_SR &0x01));//等待數(shù)據(jù)接收完畢

return SPI_DR;//將接收到的數(shù)據(jù)返回

}

3.3 Flash模塊軟件設(shè)計

SST25VF020是一款2Mbit SPI Serial NOR型Flash芯片,在系統(tǒng)中作為圖像存儲器使用。該Flash通過SPI的串口接收指令和數(shù)據(jù),支持3/4的SPI協(xié)議,其工作時序如圖8所示。

圖8 SST25VF020的工作時序圖

從上圖可以看出,CE#f氐電平使能芯片正常工作,該芯片在SCK的上升沿讀入信號,在SCK下降沿的時候輸出信號。機有專門的硬件SPI接口,但是圖像傳感器也需要單片機的硬件sPI接口與之通信,所以系統(tǒng)設(shè)計了一種分時復(fù)用單片機硬件SPI接口的方式。CE#片選連接單片機的普通I/O口PD0,該I/O口在不同的時刻與圖像傳感器的片選PD7分別選中,如此,一個硬件SPI接口便可操作2個SPI設(shè)備。SPI時鐘輸入引腳連接單片機的SPI_SCK口,SI讀人信號連接單片機的SPI_MOSI,SO輸出信號連接單片機的SPI_MISO。硬件SPI配置與前文所述圖像數(shù)據(jù)采集Sial一致。此外,與圖像采集相比,在程序部分還要多加一個單片機輸出信號函數(shù)。Flash模塊主要功能函數(shù)如下:

void sst_send_byte(unsigned char byte)

{

while(!(SPI_SR&0x02));//等待總線空閑

SPI_DR=byte;//將要寫入的數(shù)據(jù)byte存入SPI_DR

while(!(SPI_SR&0x01));//等待數(shù)據(jù)發(fā)送完畢完畢

tmp=SPI_DR;//清空接收緩沖區(qū)

void flashwrite_byte(unsigned long addr,unsigned char data)//向緩沖區(qū)l的指定位置(0—263)寫入指定字節(jié)

}

write_en();//寫使能命令

mss0();//片選端選中,低電平有效

send(0x02);//寫命令

send((unsigned char)(addr>>16));//發(fā)送數(shù)據(jù)的地址

send((unsigned char)(addr>>8));

send((unsigned char)addr);

send(data);//發(fā)送要寫入的數(shù)據(jù)

mssl();//釋放片選

}

unsigned char flashreadbyte(unsigned long addr)

}

unsigned char byte;

mss0();//片選端選中,低電平有效

send(0x03);//讀命令

send((unsigned char)(addr>>16));//發(fā)送數(shù)據(jù)的地址

send((unsigned char)(addr>>8));

send((unsigned char)addr);

byte=get();//讀取數(shù)據(jù)

mssl();//釋放片選

return byte;

}

3.4圖像的多幀采集和拼接模塊軟件設(shè)計

為保存圖像數(shù)據(jù),系統(tǒng)引入Flash存儲器,而數(shù)據(jù)轉(zhuǎn)存入Flash存儲器需要占用中斷響應(yīng)時間,這就導(dǎo)致了中斷響應(yīng)時間不夠的問題。為解決這個問題,根據(jù)所采圖像為靜態(tài)圖像這一應(yīng)用背景,提出一種多幀圖像的部分采集與拼接算法,在中斷響應(yīng)時間中,只讀取圖像傳感器中的圖像數(shù)據(jù),而后占用兩次中斷的時間,把圖像數(shù)據(jù)轉(zhuǎn)存入Flash。每幀圖像有160次中斷,每幀圖像只取其1/3,取3幀圖像的數(shù)據(jù),即可拼接成一幅完整的圖像。多幀采集方法如圖9所示。圖中,實線表示捕獲到的中斷,虛線表示因轉(zhuǎn)存人Flash錯過的中斷。

圖9 多幀采集圖像方法示意

單片機把采集的數(shù)據(jù)按照采集時間的順序轉(zhuǎn)存入Flash數(shù)據(jù)在Flash中的排列順序如圖10所示。

圖1O 圖像數(shù)據(jù)在Flash中的存儲順序

在Flash中讀取圖像數(shù)據(jù)的時候,按照中斷次數(shù)的先后順序讀出,即第l幀第1次中斷、第2幀第2次中斷、第3幀第3次中斷、第1幀第4次中斷、第2幀第5次中斷……第2幀第158次中斷、第3幀第159次中斷、第1幀第160次中斷。這樣,3幀圖像的數(shù)據(jù)拼接成一幅完整的圖像。在讀取圖像數(shù)據(jù)的同時,單片機以2個字節(jié)為單位,拼接成一個無符號整型,即一個像素點,通過RS232接口傳送至上位機。

4 試驗及分析

圖11是系統(tǒng)的實物圖,硬件系統(tǒng)面積是(7.5×7.5)cm2,雙層PCB板,系統(tǒng)結(jié)構(gòu)簡單,運行穩(wěn)定。系統(tǒng)對圖像的處理速度是4幀/s,滿足實時性的要求。

圖12為采集的一幅圖像,大小為240×320,圖像格式為bmp,像素格式為RGB565,該圖像是3幀圖像拼接而成,是單片機通過RS232接口傳輸至上位機,并在顯示器上顯示的。

圖11 系統(tǒng)實物圖

圖12 試驗結(jié)果圖像

5 結(jié)語

與其他嵌入式圖像采集系統(tǒng)相比,有3點優(yōu)勢:第一,價格低廉,有較強的市場競爭力;第二,方法新穎,提出了一種多幀圖像拼接成一幅圖像的方法,解決了單片機處理速度慢的問題,取得了很好的試驗效果;第三,系統(tǒng)體積小,結(jié)構(gòu)簡單,實時性好,能以非常低的成本附加到其他物聯(lián)網(wǎng)傳感節(jié)點上,使物聯(lián)網(wǎng)節(jié)點具有采集和傳輸圖像的功能,更大程度上方便用戶使用。


上一頁 1 2 下一頁

關(guān)鍵詞: STM8單片

評論


技術(shù)專區(qū)

關(guān)閉