新聞中心

EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > c51單片機(jī)浮點(diǎn)數(shù)及其匯編程序設(shè)計(jì)

c51單片機(jī)浮點(diǎn)數(shù)及其匯編程序設(shè)計(jì)

作者: 時(shí)間:2016-11-22 來(lái)源:網(wǎng)絡(luò) 收藏
在單片機(jī)應(yīng)用系統(tǒng)的數(shù)據(jù)處理過(guò)程中,經(jīng)常會(huì)遇到小數(shù)的運(yùn)算問(wèn)題,如求解BCD的增量算式、線性化處理等。因此,需要用二進(jìn)制數(shù)來(lái)表示小數(shù)。表示小數(shù)的方法一般有兩種,定點(diǎn)數(shù)和浮點(diǎn)數(shù)。定點(diǎn)數(shù)結(jié)構(gòu)簡(jiǎn)單,與整數(shù)的運(yùn)算過(guò)程相同,運(yùn)算速度快。但隨著所表示數(shù)的范圍的擴(kuò)大,其位數(shù)成倍增加,給運(yùn)算和存儲(chǔ)帶來(lái)不便,而且也不能保證相對(duì)精度不變。浮點(diǎn)數(shù)的結(jié)構(gòu)相對(duì)復(fù)雜,但它能夠以固定的字節(jié)長(zhǎng)度保持相對(duì)精度不變,用較少的字節(jié)表示很大的數(shù)的范圍,便于存儲(chǔ)和運(yùn)算,在處理的數(shù)據(jù)范圍較大和要求精度較高時(shí),采用浮點(diǎn)數(shù)。

浮點(diǎn)數(shù)的概念

本文引用地址:http://2s4d.com/article/201611/319885.htm

常用的科學(xué)計(jì)數(shù)法來(lái)表示一個(gè)十進(jìn)制數(shù)如

l234.75=1.23475E3=1.23475×103

在數(shù)據(jù)很大或很小時(shí),采用科學(xué)計(jì)數(shù)避免了在有效數(shù)字前加0來(lái)確定小數(shù)點(diǎn)的位置,突出了數(shù)據(jù)的有效數(shù)字的位數(shù),簡(jiǎn)化了數(shù)據(jù)的表示。可以認(rèn)為,科學(xué)計(jì)數(shù)法就是十進(jìn)制數(shù)的浮點(diǎn)數(shù)表示方法。

在二進(jìn)制效中,也可以用類似的方法來(lái)表示一個(gè)數(shù),如

1234.75=10011010010.11(二進(jìn)制)=0.1001101001011×211

一般表達(dá)式為

N=S×2p

在這種表示方法中,數(shù)值由四個(gè)部分組成,即尾數(shù)S及符號(hào),階碼P及符號(hào)。

在二進(jìn)制中,通過(guò)定義相應(yīng)字節(jié)或位來(lái)表示這四部分,就形成了二進(jìn)制浮點(diǎn)數(shù)。二進(jìn)制浮點(diǎn)數(shù)可以有多種不同的表示方法,下面是一種常見(jiàn)的三字節(jié)浮點(diǎn)數(shù)的格式:

其中尾數(shù)占16位,階碼占6位,階符占1位,數(shù)符占1位。階碼通常用補(bǔ)碼來(lái)表示。

在這種表示方法中,小數(shù)點(diǎn)的實(shí)際位置要由階碼來(lái)確定,而階碼又是可變的,因此稱為浮點(diǎn)數(shù)。

1234.75用這種格式的浮點(diǎn)數(shù)表示就是:

0000 1011 1001 1010 0101 1000

用十六進(jìn)制表示為

1234.75=0B9A58H

-1234.75=4B9A58H

0.171875=043B00H

-0.171875=443B00H

三字節(jié)浮點(diǎn)數(shù)所能表示的最大值為

1×263=9.22×1018

能表示的最小數(shù)的絕對(duì)值為

0.5×2-63=5.42×10-20

其所表示的數(shù)的絕對(duì)值范圍=(5.42×10-20~9.22×1018),由此可以看到,比三字節(jié)定點(diǎn)數(shù)表示的數(shù)的范圍大得多。

按同樣方法可以定義一個(gè)四字節(jié)的浮點(diǎn)數(shù),以滿足更高精度的需要。

規(guī)格化浮點(diǎn)數(shù)

同一個(gè)數(shù)用浮點(diǎn)數(shù)表示可以是不同的,如

1234.75=0B9A58H=0C4D2CH=0D2696H

雖然這幾種表示其數(shù)值是相同的,但其尾數(shù)的有效數(shù)字的位數(shù)不同,分別為16位、15位和14位。在運(yùn)算過(guò)程中,為了最大限度地保持運(yùn)算精度,應(yīng)盡量增加尾數(shù)的有效位數(shù)。這就需要對(duì)浮點(diǎn)數(shù)進(jìn)行規(guī)格化處理。

在只考慮用二進(jìn)制原碼表示尾數(shù)時(shí),尾數(shù)的最高位為l,則該浮點(diǎn)數(shù)為規(guī)格化浮點(diǎn)數(shù)。在規(guī)格化浮點(diǎn)數(shù)中,用尾數(shù)為0和最小階碼表示0,三字節(jié)規(guī)格化浮點(diǎn)數(shù)的0表示為410000H。

浮點(diǎn)數(shù)在運(yùn)算之前和運(yùn)算之后都要進(jìn)行規(guī)格化,規(guī)格化過(guò)程包括以下步驟:

(1)首先判斷尾是否為0,如果為0,規(guī)格化結(jié)果為410000H;

(2)如果尾數(shù)不為0,判斷層數(shù)的最高位是否為1,如果不為1,尾數(shù)左移,階碼減1;

(3)再判斷層數(shù)的最高位是否為1,如果不為1,繼續(xù)進(jìn)行規(guī)格化操作,如果為1,則規(guī)格化結(jié)束。

浮點(diǎn)數(shù)運(yùn)算

浮點(diǎn)數(shù)運(yùn)算包括加、減、乘、除四則運(yùn)算,比較運(yùn)算,開(kāi)方運(yùn)算,多項(xiàng)式運(yùn)算和函數(shù)運(yùn)算。其它運(yùn)算都可用這些基本運(yùn)算的組合來(lái)完成。本節(jié)主要介紹浮點(diǎn)數(shù)四則運(yùn)算及其子程序。

1.浮點(diǎn)數(shù)的加、減運(yùn)算

浮點(diǎn)數(shù)的運(yùn)算就是求結(jié)果的尾數(shù)、數(shù)符、階碼包括階符的過(guò)程。在加、減運(yùn)算中,參加運(yùn)算的浮點(diǎn)數(shù)的階碼可能是不同的,其尾數(shù)所代表的值也是不同的。在這種情況下,尾數(shù)不能直接相加或相減,必須首先使兩個(gè)數(shù)的階相同,這一過(guò)程稱為對(duì)階。一般是讓小階向大階對(duì)齊,尾數(shù)相應(yīng)右移。對(duì)階相當(dāng)于算術(shù)中的小數(shù)點(diǎn)對(duì)齊或代數(shù)中的通分。尾數(shù)相加或相減得到了結(jié)果的尾數(shù)。數(shù)符由尾數(shù)的運(yùn)算結(jié)果的符號(hào)確定。階碼就是兩個(gè)數(shù)中較大的階碼。

例1 計(jì)算132.25+69.75

解: 132.25+69.75=088444H+078B80H=088444H+0845C0H=08CA00H=202

由于兩個(gè)浮點(diǎn)數(shù)的階碼分別為8和7,先將加數(shù)的階碼變?yōu)?,其尾數(shù)右移1位。兩個(gè)數(shù)的階碼相同后,尾數(shù)直接相加即為和的尾數(shù),和的尾數(shù)的最高位為1,為規(guī)格化浮點(diǎn)數(shù)。

例2 計(jì)算12.39-93.1

解: 12.39-93.1=04C651H-07BA33H=87A169H=-80.71

本例中被減數(shù)小于減數(shù),差為負(fù)數(shù),結(jié)果的數(shù)符為1。差的階碼為兩個(gè)數(shù)中較大的階碼。

2.浮點(diǎn)數(shù)乘法運(yùn)算

如果設(shè)參加運(yùn)算的兩個(gè)操作數(shù)分別表示為

Na=(-1)SSa×Sa×2Pa

Nb=(-1)SSb ×Sb×2Pb

它們的積為

N=Na×Nb=(-1)SSa+SSb×(Sa×Sb)×2Pa+Pb

式中SSa和SSb為兩個(gè)數(shù)的數(shù)符。

乘法運(yùn)算可總結(jié)為:

(1)積的數(shù)符為乘數(shù)的符號(hào)位和被乘數(shù)的符號(hào)位按模2求和,即異或;

(2)積的階為乘數(shù)和被乘數(shù)的階的和;

(3)積的尾數(shù)為被乘數(shù)和乘數(shù)的尾數(shù)的積。

參加運(yùn)算的浮點(diǎn)數(shù)一般都是規(guī)格化的浮點(diǎn)數(shù),尾數(shù)的積小于1,不需進(jìn)行右規(guī)格化處理。但有可能小于0.5,所以需進(jìn)行左規(guī)格化處理,使積為規(guī)格化浮點(diǎn)數(shù)。如果乘數(shù)或被乘數(shù)的尾為0、則積為410000H。由于在尾數(shù)相乘時(shí),積的低16位不能反映在結(jié)果中,因此,積可能會(huì)產(chǎn)生一定的誤差。

例3 算22.4l×4.23。

解: 22.41×4.23=05B349H×03875EH=07BD9AH=94.8

積的階為乘數(shù)和被乘數(shù)的和,即8。尾數(shù)相乘時(shí),積小于0.5,進(jìn)行左規(guī)格化處理,階碼變?yōu)?。

例4 計(jì)算2586.5×(-6.91)。

解: 2586.5×(-6.91)=0CA1BOH×83DD13H=8F8BA0H=-17872

被乘數(shù)為正數(shù),數(shù)符為0,乘數(shù)為負(fù)數(shù),數(shù)符為1,積的數(shù)符為0⊕1=1,積為負(fù)數(shù)。

3.浮點(diǎn)數(shù)的除法運(yùn)算

除法運(yùn)算可以表示為

N=Na/Nb=[(-1)SSa×Sa×2Pa]/[(-1)SSb×Sb×2Pb ]

=(-1)SSa-SSb×(Sa/Sb) ×2Pa-Pb

浮點(diǎn)數(shù)的除法運(yùn)算可以總結(jié)為:

(1) 商的數(shù)符為被除數(shù)與除數(shù)的符號(hào)位的差;

(2) 商的階碼為被除數(shù)和除數(shù)的階碼的差;

(3) 商的尾數(shù)為被除數(shù)和除數(shù)的尾數(shù)的商。

規(guī)格化的浮點(diǎn)數(shù)進(jìn)行除法運(yùn)算時(shí),尾數(shù)相除,商不會(huì)小于0.5,不需進(jìn)行左規(guī)格化處理。但有可能大于1,有時(shí)需進(jìn)行右規(guī)格化處理。

例5 計(jì)算390.67÷14.3l。

解: 390.67÷14.31=09C357H÷04E511H=05DA4EH=27.3

商的階碼為被除數(shù)與除數(shù)的階碼的差。尾數(shù)相除時(shí),結(jié)果的最高位為1,商為規(guī)格化浮點(diǎn)數(shù)。

例6 計(jì)算 -6.02÷16.157。

解: -6.02÷16.157=83C0AAH÷058143H=FFBEC8H= -0.373

異號(hào)相除時(shí),商為負(fù)數(shù)。由于被除數(shù)的尾數(shù)大于除數(shù)的尾數(shù),所以被除數(shù)先進(jìn)行右規(guī)格化,階碼變?yōu)?,商的階碼為 -1,用補(bǔ)碼來(lái)表示。

浮點(diǎn)數(shù)運(yùn)算子程序

通過(guò)前面的分析可以看到,浮點(diǎn)運(yùn)算比較復(fù)雜,有其特有的方法和規(guī)律。這里介紹幾種常用的三字節(jié)浮點(diǎn)數(shù)運(yùn)算子程序,通過(guò)分析、設(shè)計(jì)這些程序,可以進(jìn)一步了解浮點(diǎn)數(shù)的運(yùn)算過(guò)程和特點(diǎn),熟悉復(fù)雜程序的設(shè)計(jì)方法。

1.浮點(diǎn)數(shù)通用規(guī)格化子程序

在浮點(diǎn)數(shù)運(yùn)算過(guò)程中,有時(shí)需要左規(guī)格化,有時(shí)需要右規(guī)格化。通過(guò)規(guī)格化子程序既可實(shí)現(xiàn)左規(guī)格化,又可實(shí)現(xiàn)右規(guī)格化,其具體功能如下:

當(dāng)Cy=0時(shí),進(jìn)行右規(guī)格化:F0=0時(shí).對(duì)R6(階)R2R3(尾數(shù))右規(guī)格化1位;F0=1時(shí),對(duì)R7(階)R4R5(尾數(shù))右規(guī)格化1位。

當(dāng)Cy=1時(shí),對(duì)R6(階)R3R3(尾數(shù))執(zhí)行左規(guī)格化。

程序開(kāi)始時(shí),判斷是執(zhí)行左規(guī)格化還是右規(guī)格化。如果是右規(guī)格化,還要判斷是對(duì)R6(階)R2R3(尾數(shù))還是對(duì)R7(階)R4R5(尾數(shù))進(jìn)行規(guī)格化。如果是左規(guī)格化,直至把操作數(shù)變?yōu)橐?guī)格化浮點(diǎn)數(shù)。其程序框圖如圖4-13所示。程序?yàn)椋?/p>

FSDT: JC LNORMS

MOV C, 39H ;進(jìn)行右規(guī)格化

JB F0, NR7

MOV A, R2 ;R2R3右移一位

RRC A ;(Cy)移入尾數(shù)最高位

MOV R2, A

MOV A, R3

RRC A

MOV R3, A

INC R6 ;階碼加1

RET

NR7: MOV A, R4

RRC A

MOV R4, A

MOV A, R5

RRC A

MOV R5, A

INC R7

RET

LNORMS: MOV A, R7

JNZ LSHIFT

CJNE R3, #00H, LSBIT8 ;尾數(shù)為0,階碼41H

MOV R6, #41H

LSEND : RET

LSHIFT: JB ACC.7, LSEND

LSBIT8: MOV C, F0

MOV A, R3

RLC A

MOV R3, A

MOV A, R2

RLC A

MOV R2, A

CLR F0

DEC R6

SJMP LNORMS

2.浮點(diǎn)數(shù)加減運(yùn)算子程序

參加運(yùn)算的浮點(diǎn)數(shù)可能是正數(shù),也可能是負(fù)數(shù)。對(duì)于加法運(yùn)算.當(dāng)加數(shù)和被加數(shù)的數(shù)符相同時(shí),尾數(shù)相加,不同時(shí)尾數(shù)相減;對(duì)于減法運(yùn)算,當(dāng)減數(shù)和被減數(shù)的數(shù)符相同時(shí),尾數(shù)相減、不同時(shí)尾數(shù)相加。當(dāng)兩個(gè)浮點(diǎn)數(shù)的階碼不同時(shí),要進(jìn)行對(duì)階,使小階與大階相等,因此,結(jié)果的階碼與其較大的階碼相同。

在執(zhí)行加法運(yùn)算時(shí),尾數(shù)有可能大于1,因此要進(jìn)行右規(guī)格化處理;執(zhí)行減法運(yùn)算時(shí),尾數(shù)有可能小于0.5,因此,要進(jìn)行左規(guī)格化處理。

下面是三字節(jié)浮點(diǎn)數(shù)加、減法處理于程序,具體功能為:

R6(階)R2R3(尾)±R7(階)R4R5(尾)→R4(階)R2R3(尾);

當(dāng)位3AH=0時(shí),執(zhí)行加法;

當(dāng)位3AH=1時(shí),執(zhí)行減法。

程序框圖如圖4—14所示。程序如下:

FABP: MOV A, R6

MOV C, ACC.7

MOV 38H, C ;存被加數(shù)數(shù)符

XRL A, R7

JNB ACC.7, FAB1 ;數(shù)符相同則轉(zhuǎn)

CPL 3AH ;數(shù)符不等,求反運(yùn)算標(biāo)志

圖4-14

FAB1: MOV A, R6

MOV C, ACC.6 ;擴(kuò)展階碼符號(hào)位

MOV ACC.7, C

MOV R6, A

MOV A, R7

CLR C

MOV A, R6

SUBB A, R7

JZ FAB2 ;階碼相同則轉(zhuǎn)

CLR F0

JB ACC.7, FAB6

CJNE R4, #00H, FAB7

CJNE R5, #00H, FAB7

FAB2: JB 3AH, FAB9 ;轉(zhuǎn)向尾數(shù)減法

MOV A, R3 ;執(zhí)行尾數(shù)加法

ADD A, R5

MOV R3, A

ADD A, R2

ADDC A, R4

MOV R2, A

JNC FAB4

SETB 39H

CLR C

FAB3: CLR F0

LCALL FSDT

FAB4: CJNE R2, #00H, FAB5

CJNE R3, #00H, FAB5

MOV R4, #41 ;結(jié)果為0,規(guī)格化

RET

FAB5: MOV A, R6

MOV C, 38H

MOV ACC.7, C

XCH A, R4

MOV R6, A

RET

FAB6: CJNE R2, #00H, FAB8

CJNE R3, #00H, FAB8

MOV A, R7

MOV R6, A

SJMP FAB2

FAB7: CPL F0

FAB8: CLR C

LCALL FSDT

SJMP FAB1

FAB9: MOV A, R3 ;尾數(shù)相減

CLR C

SUBB A, R5

MOV R3, A

MOV A, R2

SUBB A, R4

MOV R2, A

JNC FAB10

CLR A

CLR C

SUBB A, R3

MOV R3, A

CLR A

SUBB A, R2

MOV R2, A

CPL 38H

FAB10: SETB C

SJMP FAB3

3. 浮點(diǎn)數(shù)乘法運(yùn)算子程序

浮點(diǎn)數(shù)相乘時(shí),階碼直接相加即獲得積的階碼,尾數(shù)相乘時(shí),結(jié)果可能小于0.5,需進(jìn)行左規(guī)格化處理。下面是三字節(jié)浮點(diǎn)數(shù)乘法運(yùn)算子程序,具體功能為:

(Ro)指向的三字節(jié)浮點(diǎn)數(shù)×(R1)指向的三字節(jié)浮點(diǎn)數(shù)→R4(階)R2R3(尾數(shù))。

圖4-15三字節(jié)浮點(diǎn)數(shù)乘法的程序框圖。程序?yàn)椋?/p>

FMUL: LCALL FMLD ;傳送浮點(diǎn)數(shù)

MOV A, R6 ;求積的數(shù)符

XRL A, R7

MOV C, ACC.7

MOV 38H, C

LCALL DMUL ;調(diào)用雙字節(jié)無(wú)符號(hào)數(shù)乘法子程序

MOV A, R7

MOV C, ACC.7

MOV F0, C

MOV A, @R0

ADD A, @R1

MOV R6, A

SETB C

LCALL FSDT ;進(jìn)行規(guī)格化操作

圖4-15 三字節(jié)浮點(diǎn)數(shù)乘法子程序

MOV A, R6

MOV C, 38H

MOV ACC.7, C ;置積的數(shù)符

MOV R4, A

RET

注:(1)FMLD為浮點(diǎn)數(shù)取數(shù)子程序,功能為:將(R0)指向的三字節(jié)浮點(diǎn)數(shù)送入R6(階)R2R3(尾數(shù))中,將(R1)指向的三字節(jié)浮點(diǎn)數(shù)送入R7(階)R4R5(尾數(shù))中。

(2)DMUL為雙字節(jié)無(wú)符號(hào)數(shù)乘法子程序。

4.浮點(diǎn)數(shù)除法運(yùn)算子程序

在進(jìn)行除法運(yùn)算時(shí),被除數(shù)的尾數(shù)可能比除數(shù)的尾數(shù)大很多,使結(jié)果大于1。為避免這種情況,如果被除數(shù)尾數(shù)大于除數(shù)的尾數(shù),先將被除數(shù)的尾數(shù)右移,使其小于除數(shù)的尾數(shù)。階碼也相應(yīng)增加,保持其數(shù)值不變。下面是三字節(jié)浮點(diǎn)數(shù)除法運(yùn)算程序,其功能為:(R0)指向的三字節(jié)浮點(diǎn)數(shù)除以(R1)指向的三字節(jié)浮點(diǎn)數(shù)→R4(階)R2R3(尾數(shù))中。

程序框圖如圖4-16所示。程序?yàn)椋?/p>

FDIV: LCALL FMLD

MOV A, R6

XRL A, R7 ;求商的數(shù)符

MOV C, ACC.7

MOV 38H, C

CLR A

MOV R6, A

MOV R7, A

CJNE R4, #00H, FDIV1

CJNE R5, #00H, FDIV1

SETB C

RET ;除數(shù)為0返回

FDIV1: MOV A, R3 ;比較被除數(shù)與

SUBB A, R5 ;除數(shù)的尾數(shù)

MOV A, R2

SUBB A, R4

JC FDIV2

CLR F0

CLR 39H

LCALL FDST

RRC A

MOV R7, A

CLR C

SJMP FDIV1

FDIV2: CLR A

XCH A, R6

PUSH ACC

LCALL DDIV ;調(diào)用雙字節(jié)除法程序

POP ACC

ADD A, @R0

CLR C

SUBB A, @R1

MOV C, 38H

MOV ACC.7, C

MOV R4, A

CLR C

RET



評(píng)論


技術(shù)專區(qū)

關(guān)閉