stm32的定時器輸入捕獲與輸出比較
輸入捕捉:可以用來捕獲外部事件,并為其賦予時間標記以說明此事件的發(fā)生時刻。
外部事件發(fā)生的觸發(fā)信號由單片機中對應的引腳輸入(具體可以參考單片機的datasheet),也可以通過模擬比較器單元來實現(xiàn)。
時間標記可用來計算頻率,占空比及信號的其他特征,以及為事件創(chuàng)建日志,主要是用來測量外部信號的頻率。
輸出比較:定時器中計數(shù)寄存器在初始化完后會自動的計數(shù)。從bottom計數(shù)到top。并且有不同的工作模式。
另外還有個比較寄存器。一旦計數(shù)寄存器在從bottom到top計數(shù)過程中與比較寄存器匹配則會產(chǎn)生比較中斷(比較中斷使能的情況下)。
然后根據(jù)不同的工作模式計數(shù)寄存器將清零或者計數(shù)到top值。
1、朋友,可以解釋一下輸入捕獲的工作原理不?
很簡單,當你設置的捕獲開始的時候,cpu會將計數(shù)寄存器的值復制到捕獲比較寄存器中并開始計數(shù),當再次捕捉到電平變化時,這是計數(shù)寄存器中的值減去剛才復制的值就是這段電平的持續(xù)時間,你可以設置上升沿捕獲、下降沿捕獲、或者上升沿下降沿都捕獲。它沒多大用處,最常用來測頻率。
計數(shù)寄存器的初值,是自己寫進去的嗎?
是的,不過默認不要寫入
我如果捕獲上升沿,兩個值相減,代表的時兩個上升沿中間那段電平的時間。對不?
是的
timer1有五個通道(對應五個IO引腳),在同一時刻,只能捕獲一個引腳的值,對不?
那是肯定的,通道很像ADC通道,是可以進行切換的。
那輸出比較的原理你可以幫我介紹一下不?
這里有兩個單元:一個計數(shù)器單元和一個比較單元,比較單元就是個雙緩沖寄存器,比較單元的值是可以根據(jù)不同的模式設置的,與此同時,計數(shù)器在不停的計數(shù),并不停的與比較寄存器中的值進行比較,當計數(shù)器的值與比較寄存器的值相等的時候一個比較匹配就發(fā)生了,根據(jù)自己的設置,匹配了是io電平取反、變低、還是變高,就會產(chǎn)生不同的波形了。
比較單元的值是人為設進去的吧?
是的,但是他要根據(jù)你的控制寄存器的配置,來初始化你的比較匹配寄存器。
上面這個總看不懂,好像不不止你說的那幾種情況:“匹配了是io電平取反、變低、還是變高,就會產(chǎn)生不同的波形了”
就是比較匹配了你要IO電平怎么辦?是清0還是置1?還是怎么樣?這樣才能產(chǎn)生波形啊要不然你要比較單元有什么用呢?
設置輸出就是置1,清除輸出就是置0,切換輸出就是將原來的電平取反,對不?
是的你理解的很快
011:計數(shù)器向上計數(shù)達到最大值時將引腳置1,達到0時,引腳電平置0,,對不?
恩
定時器1的輸出比較模式怎么用。利用這個功能輸出一個1KHZ,占空比為10%的程序怎么寫???求高人指點
1、陪定時器1的功能為特殊功能,不是普通IO
2、P1SEL引腳選擇
3、P1DIR設為輸出
4、T3CC0設置周期
5、T3CC1設置占空比
6、T3CCTL0 設置通道0
7、T3CCTL1 設置通道1
8、T3CTL設為模模式
9、用T3CTL打開即可
************以下是用定時器做頻率源,用定時器測量該頻率的應用程序?。?!***********
調(diào)試STM32的定時器好幾天了,也算是對STM32的定時器有了點清楚的認識了。我需要測量4路信號的頻率然后通過DMA將信號的頻率傳輸?shù)酱鎯ζ鲄^(qū)域,手冊說的很明白每個定時器有4個獨立通道。然后我就想能不能將這4路信號都連接到一個定時器的4個通道上去。理論上應該是行的通的。剛開始俺使用的是 TIM2的123通道,TIM4的2通道來進行頻率的測量。由于沒有頻率發(fā)生器,所以我用tim3作為信號源,用TIM2,TIM4來進行測量就ok了(剛好4個通道了)。
請看一開始的程序,以TIM2的1,3通道為例子(2通道設置方法一樣):
TIM_ICInitStructure.TIM_ICMode =TIM_ICMode_ICAP;
TIM_ICInitStructure.TIM_Channel =TIM_Channel_1;
TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter =0x0;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_ICMode = TIM_ICMode_ICAP;
TIM_ICInitStructure.TIM_Channel =TIM_Channel_3;
TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
以上是輸入捕獲配置
還需要做的工作就是(參考stm32參考手冊的TIM的結構框圖):
//主從模式選擇
這樣我們就可以很輕松的就得到了連接在TIM2的通道1上的信號的頻率,但是3通道的頻率的值永遠都是跳動的不準,測試了半天也沒有找到根本原因,請看TIM的結構框圖的一部分
紅色箭頭所指,這才找到原因,觸發(fā)的信號源只有這四種,而通道3上的計數(shù)器的值不可能在接受到信號的上升沿時候,有復位這個動作,找到原因了。這就是3 通道上的數(shù)據(jù)不停跳動的原因,要想得到信號的頻率也是有辦法的,可以取連續(xù)兩次捕捉的值之差,這個值就是信號的周期,自己根據(jù)實際情況去算頻率吧。
有以上可以得到:
stm32的TIM2的四個通道可以同時配置成輸入捕捉模式,但是計算CH3,CH4信號的頻率步驟有點繁瑣(取前后捕捉的差值),但是他的CH1,和CH2可以輕松得到:
通道1
TIMx->CRR1的值即為信號的周期
通道2:
TIMx->CRR2的值即為信號的周期
STM32的定時器外設功能強大得超出了想像力,STM32一共有8個都為16位的定時器。其中TIM6、TIM7是基本定時器;TIM2、TIM3、TIM4、TIM5是通用定時器;TIM1和TIM8是高級定時器。這些定時器使STM32具有定時、信號的頻率測量、信號的PWM測量、PWM輸出、三相6步電機控制及編碼器接口等功能,都是專門為工控領域量身訂做的。
我們來看看它的啟動代碼:
void TIM2_Configuration(void)
{
}
我們來詳細講解:如何生成PWM脈沖
通用定時器可以利用GPIO引腳進行脈沖輸出,在配置為比較輸出、PWM輸出功能時,捕獲/比較寄存器TIMx_CCR被用作比較功能,下面把它簡稱為比較寄存器。
這里直接舉例說明定時器的PWM輸出工作過程:若配置脈沖計數(shù)器TIMx_CNT為向上計數(shù),而重載寄存器TIMx_ARR(相當于庫函數(shù)寫法的TIM_Period的值N)被配置為N,即TIMx_CNT的當前計數(shù)值數(shù)值X在TIMxCLK時鐘源的驅(qū)動下不斷累加,當TIMx_CNT的數(shù)值X大于N時,會重置TIMx_CNT數(shù)值為0重新計數(shù)。
而在TIMxCNT計數(shù)的同時,TIMxCNT的計數(shù)值X會與比較寄存器TIMx_CCR預先存儲了的數(shù)值A進行比較,當脈沖計數(shù)器TIMx_CNT的數(shù)值X小于比較寄存器TIMx_CCR的值A時,輸出高電平(或低電平),相反地,當脈沖計數(shù)器的數(shù)值X大于或等于比較寄存器的值A時,輸出低電平(或高電平)。
如此循環(huán),得到的輸出脈沖周期就為重載寄存器TIMx_ARR存儲的數(shù)值(N+1)乘以觸發(fā)脈沖的時鐘周期,其脈沖寬度則為比較寄存器TIMx_CCR的值A乘以觸發(fā)脈沖的時鐘周期,即輸出PWM的占空比為A/(N+1)。
如果不想看的可以直接看我標注的紅色字體,就大體可以理解。
下面我們來編寫具體代碼和講解:
void TIM3_GPIO_Config(void)
{配置TIM3復用輸出PWM的IO
}
void TIM3_Mode_Config(void)
{
}
太累了邊看邊寫都這個點了2014年7月27日0:24:13在自己床上寫的。下面是看看我們程序達到的4路PWM的效果:
可以看到明顯占空比不同的4路pwm波。
評論