arm linux 下中斷流程簡要分析初始化
因此,在中斷初始化的時候我們要做的就是在IRQ和FIQ的位置處放置我們的中斷處理函數地址或跳轉語句跳轉到我們的中斷處理函數。這個過程是在trap_init中完成的,而他由start_kernel()調用。
本文引用地址:http://2s4d.com/article/201611/317932.htmarch/arm/kernel/traps.c:
void __init trap_init(void)
{
unsigned long vectors = CONFIG_VECTORS_BASE;/*跳轉表的存放位置(即上面那表的存放位置)*/
/*這些都在entry-armv.S下定義*/
extern char __stubs_start[], __stubs_end[];
extern char __vectors_start[], __vectors_end[];
extern char __kuser_helper_start[], __kuser_helper_end[];
int kuser_sz = __kuser_helper_end - __kuser_helper_start;
/*
* Copy the vectors, stubs and kuser helpers (in entry-armv.S)
* into the vector page, mapped at 0xffff0000, and ensure these
* are visible to the instruction stream.
*/
/*跳轉表內容到指定的位置*/
memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);
/*
* Copy signal return handlers into the vector page, and
* set sigreturn to be a pointer to these.
*/
memcpy((void *)KERN_SIGRETURN_CODE, sigreturn_codes,
sizeof(sigreturn_codes));
flush_icache_range(vectors, vectors + PAGE_SIZE);
modify_domain(DOMAIN_USER, DOMAIN_CLIENT);
}
上面這個函數主要就是在CONFIG_VECTORS_BASE處設置好那張?zhí)D表,CONFIG_VECTORS_BASE在autoconf.h中定義(該文件自動成生),值為0xffff0000,而CP15下的r1[13]在系統啟動的時候在匯編部分就已經設置好了。
接下來我們就看下__vectors_start,__vectors_end,__stubs_start,__stubs_end之間的內容。
arch/arm/kernel/entry-armv.S:
.globl__vectors_start
__vectors_start:
swiSYS_ERROR0
bvector_und + stubs_offset
ldrpc, .LCvswi + stubs_offset
bvector_pabt + stubs_offset
bvector_dabt + stubs_offset
bvector_addrexcptn + stubs_offset
bvector_irq + stubs_offset
bvector_fiq + stubs_offset
.globl__vectors_end
__vectors_end:
.data
看到了吧, 就是那張?zhí)D表。vector_irq,vector_fiq等函數我們后面在分析,他們就定義在__stubs_start,__stubs_end中。
至此經過traps_init后,在0xffff0000處的跳轉表就形成了。當產生IRQ時,將調用bvector_irq + stubs_offset
在系統初始化的時候還會調用init_IRQ函數(也由start_kernel調用),它初始化了一個全局中斷描述符表(該表保存了每個中斷的所有屬性信息)。并調用特定平臺的中斷初始化函數。
arm/arm/kernel/Irq.c:
void __init init_IRQ(void)
{
int irq;
/*初始化中斷描述符表*/
for (irq = 0; irq < NR_IRQS; irq++)
irq_desc[irq].status |= IRQ_NOREQUEST | IRQ_DELAYED_DISABLE |
IRQ_NOPROBE;
#ifdef CONFIG_SMP
bad_irq_desc.affinity = CPU_MASK_ALL;
bad_irq_desc.cpu = smp_processor_id();
#endif
init_arch_irq();/*特定平臺的中斷初始化*/
}
系統中總共有NR_IRQS個中斷,并且每個中斷都有一個中斷描述符,保存在irq_desc中,該描述符保存了該中斷的所有屬性信息。
對于平臺smdk2410來說init_arch_irq()就是s3c24xx_init_irq()函數,這是在setup_arch()里面賦值的。
后面的內容我們都以中斷號:IRQ_WDT為例來講解:
arch/arm/mach-s3c2410/Irq.c:
/* s3c24xx_init_irq
*
* Initialise S3C2410 IRQ system
*/
void __init s3c24xx_init_irq(void)
{
unsigned long pend;
unsigned long last;
int irqno;
int i;
irqdbf("s3c2410_init_irq: clearing interrupt status flags/n");
/* first, clear all interrupts pending... */
/*先清掉所有的pending標志位,該位代表是否系統中觸發(fā)了一個中斷*/
last = 0;
for (i = 0; i < 4; i++) {
pend = __raw_readl(S3C24XX_EINTPEND);
if (pend == 0 || pend == last)
break;
__raw_writel(pend, S3C24XX_EINTPEND);
printk("irq: clearing pending ext status %08x/n", (int)pend);
last = pend;
}
last = 0;
for (i = 0; i < 4; i++) {
pend = __raw_readl(S3C2410_INTPND);
if (pend == 0 || pend == last)
break;
__raw_writel(pend, S3C2410_SRCPND);
__raw_writel(pend, S3C2410_INTPND);
printk("irq: clearing pending status %08x/n", (int)pend);
last = pend;
}
last = 0;
for (i = 0; i < 4; i++) {
pend = __raw_readl(S3C2410_SUBSRCPND);
if (pend == 0 || pend == last)
break;
printk("irq: clearing subpending status %08x/n", (int)pend);
__raw_writel(pend, S3C2410_SUBSRCPND);
last = pend;
}
/* register the main interrupts */
/*注冊主要的中斷*/
irqdbf("s3c2410_init_irq: registering s3c2410 interrupt handlers/n");
for (irqno = IRQ_EINT4t7; irqno <= IRQ_ADCPARENT; irqno++) {
/* set all the s3c2410 internal irqs */
switch (irqno) {
/* deal with the special IRQs (cascaded) */
case IRQ_EINT4t7:
case IRQ_EINT8t23:
case IRQ_UART0:
case IRQ_UART1:
case IRQ_UART2:
case IRQ_ADCPARENT:
set_irq_chip(irqno, &s3c_irq_level_chip);
set_irq_handler(irqno, do_level_IRQ);
break;
case IRQ_RESERVED6:
case IRQ_RESERVED24:
/* no IRQ here */
break;
default:/*IRQ_WDT就是這條通路*/
//irqdbf("registering irq %d (s3c irq)/n", irqno);
set_irq_chip(irqno, &s3c_irq_chip); /*為中斷號設置chip*/
set_irq_handler(irqno, do_edge_IRQ); /*設置中斷例程*/
set_irq_flags(irqno, IRQF_VALID);/*設置中斷ready的標記*/
}
}
/* setup the cascade irq handlers */
set_irq_chained_handler(IRQ_EINT4t7, s3c_irq_demux_extint);
set_irq_chained_handler(IRQ_EINT8t23, s3c_irq_demux_extint);
set_irq_chained_handler(IRQ_UART0, s3c_irq_demux_uart0);
set_irq_chained_handler(IRQ_UART1, s3c_irq_demux_uart1);
set_irq_chained_handler(IRQ_UART2, s3c_irq_demux_uart2);
set_irq_chained_handler(IRQ_ADCPARENT, s3c_irq_demux_adc);
/* external interrupts */
for (irqno = IRQ_EINT0; irqno <= IRQ_EINT3; irqno++) {
irqdbf("registering irq %d (ext int)/n", irqno);
set_irq_chip(irqno, &s3c_irq_eint0t4);
set_irq_handler(irqno, do_edge_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
for (irqno = IRQ_EINT4; irqno <= IRQ_EINT23; irqno++) {
irqdbf("registering irq %d (extended s3c irq)/n", irqno);
set_irq_chip(irqno, &s3c_irqext_chip);
set_irq_handler(irqno, do_edge_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
/* register the uart interrupts */
irqdbf("s3c2410: registering external interrupts/n");
for (irqno = IRQ_S3CUART_RX0; irqno <= IRQ_S3CUART_ERR0; irqno++) {
irqdbf("registering irq %d (s3c uart0 irq)/n", irqno);
set_irq_chip(irqno, &s3c_irq_uart0);
set_irq_handler(irqno, do_level_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
for (irqno = IRQ_S3CUART_RX1; irqno <= IRQ_S3CUART_ERR1; irqno++) {
irqdbf("registering irq %d (s3c uart1 irq)/n", irqno);
set_irq_chip(irqno, &s3c_irq_uart1);
set_irq_handler(irqno, do_level_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
for (irqno = IRQ_S3CUART_RX2; irqno <= IRQ_S3CUART_ERR2; irqno++) {
irqdbf("registering irq %d (s3c uart2 irq)/n", irqno);
set_irq_chip(irqno, &s3c_irq_uart2);
set_irq_handler(irqno, do_level_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
for (irqno = IRQ_TC; irqno <= IRQ_ADC; irqno++) {
irqdbf("registering irq %d (s3c adc irq)/n", irqno);
set_irq_chip(irqno, &s3c_irq_adc);
set_irq_handler(irqno, do_edge_IRQ);
set_irq_flags(irqno, IRQF_VALID);
}
irqdbf("s3c2410: registered interrupt handlers/n");
}
上面這個函數結合s3c2410的data sheet很好理解,就是注冊各個必要的中斷,注意這里為每個中斷號注冊的中斷例程只是個整體的函數,該函數只是處理一些共性的操作如清中斷標記位等,他會進一步調用我們注冊的中斷例程來處理特定的中斷。如何注冊中斷會在后面分析。
這個初始化函數調用了很多與中斷相關的函數,我們逐個分析:
先看set_irq_chip
kernel/irq/chip.c:
/
*set_irq_chip - set the irq chip for an irq
*@irq:irq number
*@chip:pointer to irq chip description structure
*/
/*為某個中斷號設置一個chip*/
int set_irq_chip(unsigned int irq, struct irq_chip *chip)
{
struct irq_desc *desc;
unsigned long flags;
if (irq >= NR_IRQS) {
printk(KERN_ERR "Trying to install chip for IRQ%d/n", irq);
WARN_ON(1);
return -EINVAL;
}
if (!chip)
chip = &no_irq_chip;
desc = irq_desc + irq;/*獲取保存該中斷的中斷描述符*/
spin_lock_irqsave(&desc->lock, flags);
irq_chip_set_defaults(chip); /*為chip設置一些默認的enable,disable函數*/
desc->chip = chip;/*為中斷保存chip對象*/
/*
* For compatibility only:
*/
desc->chip = chip;
spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
為特定中斷號初始化好chip對象,表示該中斷號由這個chip控制,后面會調用到該中斷號所屬chip的相關函數,各個中斷的chip是不同的,以IRQ_WDT為例,它的chip是s3c_irq_chip。
arch/arm/mach-s3c2410/Irq.c:
static struct irqchip s3c_irq_chip = {
.ack= s3c_irq_ack,
.mask= s3c_irq_mask,
.unmask= s3c_irq_unmask,
.set_wake= s3c_irq_wake
};
在看irq_chip_set_defaults
kernel/irq/Chip.c:
/*
* Fixup enable/disable function pointers
*/
void irq_chip_set_defaults(struct irq_chip *chip)
{
if (!chip->enable)
chip->enable = default_enable;
if (!chip->disable)
chip->disable = default_disable;
if (!chip->startup)
chip->startup = default_startup;
if (!chip->shutdown)
chip->shutdown = chip->disable;
if (!chip->name)
chip->name = chip->typename;
}
很顯然,如果chip沒有相應的操作函數,則就給chip賦默認的操作函數。
我們接著看set_irq_handler()
include/linux/Irq.h:
static inline void
set_irq_handler(unsigned int irq,
void fastcall (*handle)(unsigned int, struct irq_desc *,
struct pt_regs *))
{
__set_irq_handler(irq, handle, 0);
}
kernel/irq/Chip.c:
void
__set_irq_handler(unsigned int irq,
void fastcall (*handle)(unsigned int, irq_desc_t *,
struct pt_regs *),
int is_chained)
{
struct irq_desc *desc;
unsigned long flags;
if (irq >= NR_IRQS) { /*參數檢查*/
printk(KERN_ERR
"Trying to install type control for IRQ%d/n", irq);
return;
}
desc = irq_desc + irq; /*獲取中斷描述符的存儲地址*/
if (!handle)
handle = handle_bad_irq;/*賦默認的中斷handle*/
if (desc->chip == &no_irq_chip) {
printk(KERN_WARNING "Trying to install %sinterrupt handler "
"for IRQ%d/n", is_chained ? "chained " : " ", irq);
/*
* Some ARM implementations install a handler for really dumb
* interrupt hardware without setting an irq_chip. This worked
* with the ARM no_irq_chip but the check in setup_irq would
* prevent us to setup the interrupt at all. Switch it to
* dummy_irq_chip for easy transition.
*/
desc->chip = &dummy_irq_chip;/*賦默認的chip*/
}
spin_lock_irqsave(&desc->lock, flags);
/* Uninstall? */
if (handle == handle_bad_irq) {
if (desc->chip != &no_irq_chip) {
desc->chip->mask(irq);
desc->chip->ack(irq);
}
desc->status |= IRQ_DISABLED;/*沒有中斷例程則disable掉該中斷*/
desc->depth = 1;
}
desc->handle_irq = handle;/*保存中斷例程,對于IRQ_WDT來說則是do_edge_IRQ */
/*由上面的調用可知,is_chained始終等于0*/
if (handle != handle_bad_irq && is_chained) {
desc->status &= ~IRQ_DISABLED;
desc->status |= IRQ_NOREQUEST | IRQ_NOPROBE;
desc->depth = 0;
desc->chip->unmask(irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
}
上面這個函數就是為特定的中斷設置好一個中斷處理例程(這里的例程可不是我們request_irq注冊的例程喔)。
接著看set_irq_flags()
arch/arm/kernel/Irq.c:
void set_irq_flags(unsigned int irq, unsigned int iflags)
{
struct irqdesc *desc;
unsigned long flags;
if (irq >= NR_IRQS) {
printk(KERN_ERR "Trying to set irq flags for IRQ%d/n", irq);
return;
}
desc = irq_desc + irq;
spin_lock_irqsave(&desc->lock, flags);
desc->status |= IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN;
if (iflags & IRQF_VALID)
desc->status &= ~IRQ_NOREQUEST;/*清掉IRQ_NOREQUEST標記*/
if (iflags & IRQF_PROBE)
desc->status &= ~IRQ_NOPROBE;
if (!(iflags & IRQF_NOAUTOEN))
desc->status &= ~IRQ_NOAUTOEN;
spin_unlock_irqrestore(&desc->lock, flags);
}
該函數主要是為特定的中斷設置相應的狀態(tài)標記, 而這里我們調用它的目的就是清掉IRQ_NOREQUEST標記,告訴系統該中斷已經可以被申請使用了,中斷在申請的時候會查看是否有IRQ_NOREQUEST標記,如有則表面該中斷還不能使用。而初始化的時候所有的中斷都有這個標記。
評論