新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > STM32學(xué)習(xí)記錄19 定時器觸發(fā)ADC

STM32學(xué)習(xí)記錄19 定時器觸發(fā)ADC

作者: 時間:2016-11-13 來源:網(wǎng)絡(luò) 收藏
關(guān)于定時器出發(fā)ADC的問題一直比較迷惑,看各種資料講的也很少。這里就那官方的例程來仔細(xì)分析一下吧。
1:下面為官方例程,
int main(void)
{
#ifdef DEBUG
debug();
#endif
/* System clocks configuration ---------------------------------------------*/
RCC_Configuration();
/* NVIC configuration ------------------------------------------------------*/
NVIC_Configuration();
/* GPIO configuration ------------------------------------------------------*/
GPIO_Configuration();
/* TIM1 configuration ------------------------------------------------------*/
/* Time Base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 0xFF;
TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* TIM1 channel1 configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0x7F;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
/* DMA1 Channel1 Configuration ----------------------------------------------*/
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)ADC_RegularConvertedValueTab;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 32;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
/* Enable DMA1 channel1 */
DMA_Cmd(DMA1_Channel1, ENABLE);
/* ADC1 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channel14 configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_13Cycles5);
/* Set injected sequencer length */
ADC_InjectedSequencerLengthConfig(ADC1, 1);
/* ADC1 injected channel Configuration */
ADC_InjectedChannelConfig(ADC1, ADC_Channel_11, 1, ADC_SampleTime_71Cycles5);
/* ADC1 injected external trigger configuration */
ADC_ExternalTrigInjectedConvConfig(ADC1, ADC_ExternalTrigInjecConv_None);
/* Enable automatic injected conversion start after regular one */
ADC_AutoInjectedConvCmd(ADC1, ENABLE);
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 external trigger */
ADC_ExternalTrigConvCmd(ADC1, ENABLE);
/* Enable JEOC interupt */
ADC_ITConfig(ADC1, ADC_IT_JEOC, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC1 reset calibaration register */
ADC_ResetCalibration(ADC1);
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
/* Start ADC1 calibaration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM1 main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
/* Test on channel1 transfer complete flag */
while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
/* Clear channel1 transfer complete flag */
DMA_ClearFlag(DMA1_FLAG_TC1);
/* TIM1 counter disable */
TIM_Cmd(TIM1, DISABLE);
while (1)
{
}
}
2:關(guān)于AD的DMA暫時不介紹,主要介紹定時器和ADC的關(guān)聯(lián),下面是例程中兩者的關(guān)鍵函數(shù)
/* TIM1 configuration ------------------------------------------------------*/
/* Time Base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 0xFF;
TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* TIM1 channel1 configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0x7F;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
。
。
。
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
。
。
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM1 main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
。
。
。
/* TIM1 counter disable */
TIM_Cmd(TIM1, DISABLE);

下面分條解釋,解釋之前需要了解一下ADC外部觸發(fā)的相關(guān)知識:
2.1首先ADC的外部觸發(fā)必須是上升沿才可以啟動轉(zhuǎn)換。
那么如何得到上升沿呢?需要看一下定時器的內(nèi)容
2.2定時器中有這么一段話:輸出部分產(chǎn)生一個中間波形OCxRef(高有效)作為基準(zhǔn),鏈的末端決定最終輸出信號的極性。 也就是說OCxREF只是一個中間信號,我們關(guān)心的是最終的信號。
那么最后一句話中最終信號的極性如何確定呢?繼續(xù)往下看:
2.3末端最終信號的極性確定
從圖中可以看到中中間參看信號OC1REF經(jīng)過TIM1_CCER_CCIE TIM1_CCER_CCIP最終決定OC1的輸出極性??匆幌聰?shù)據(jù)手冊,輸出模式中貌似只有PWM模式可以滿足2.1中提到的,可以產(chǎn)生一個上升沿來觸發(fā)AD轉(zhuǎn)換。
現(xiàn)在可以解釋代碼了,結(jié)合官網(wǎng)的源文件和寄存器來說明一下會更加的深刻吧!
3 代碼解釋
3.1 定時器設(shè)定為PWM模式
/* TIM1 configuration ------------------------------------------------------*/
/* Time Base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 0xFF;
TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);//上面的代碼就不需要解釋了,主要就是設(shè)置定時器的周期,需要注意的是定時器設(shè)置為向上計數(shù)模式。下面的代碼逐條解釋
/* TIM1 channel1 configuration in PWM mode */
①TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //TIM1 脈沖寬度調(diào)制模式 1
②TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //使能輸出比較狀態(tài)
TIM_OCInitStructure.TIM_Pulse = 0x7F;
③TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //TIM1 輸出比較極性低
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
①頭文件中
#defineTIM_OCMode_PWM1((uint16_t)0x0060) 賦值給TIMx->CCMR1,對比下面的文檔,可以看出是設(shè)置為PWM模式1


②頭文件中定義
#defineTIM_OutputState_Enable((uint16_t)0x0001)賦值給TIMx->CCER寄存器
,對照文檔看出是使能OC1的輸出。
③頭文件中定義
#defineTIM_OCPolarity_Low((uint16_t)0x0002)賦值給TIMx->CCER,對照文檔看出
OC1是低電平有效,這一點非常重要,說明在最后的輸出端口是低電平有效的,
TIMx_ARR:自動裝載寄存器, 確定PWM的頻率,
TIM_CCRx:捕獲/比較寄存器,確定只占空比
TIMx_CNT:計數(shù)器寄存器。
也就是說當(dāng)CNT
3.2 定時器和PWM打開
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM1 main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
。
。
/* TIM1 counter disable */
TIM_Cmd(TIM1, DISABLE);
上面代碼相對簡單,就是打開定時器,使能PWM輸出。需要注意的是一定要有TIM_CtrlPWMOutputs(TIM1, ENABLE);函數(shù)的調(diào)用。其中就是使能了TIMx_BDTR_MOE。


評論


技術(shù)專區(qū)

關(guān)閉