新聞中心

EEPW首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > [原創(chuàng)] 寬帶A類放大器在通信測試中的應(yīng)用

[原創(chuàng)] 寬帶A類放大器在通信測試中的應(yīng)用

作者: 時(shí)間:2016-10-18 來源:網(wǎng)絡(luò) 收藏

■ MILMEGA公司

Broadband Class A amplifiers in Communications Test Applications

簡介

本文介紹了第三代(WCDMA)和第四代(OFDM)手機(jī)調(diào)制方案及其關(guān)鍵傳輸特性,以及用于傳輸部件和組件開發(fā)/生產(chǎn)測試的測試放大器所需功能涉及的基本概念。

本文中所有例證均選取移動電話系統(tǒng)下行鏈路(基站到移動電話)進(jìn)行測試。

WCDMA

WCDMA(寬帶碼多分址)是第三代(3G)移動電話網(wǎng)絡(luò)UMTS的定義空中接口。采用直接序列擴(kuò)頻(DSSS),將“偽噪聲”擴(kuò)頻碼與用戶信號結(jié)合,通過帶寬傳輸用戶信號。將不同代碼分配給不同用戶,通過同一帶寬實(shí)現(xiàn)多種信號同時(shí)傳輸。由于信號分配代碼相同,接收端可還原(解擴(kuò))復(fù)合寬帶信號中的特定信號。還原過程中,寬帶中所有其它擴(kuò)展信號均表現(xiàn)為噪聲。

DSSS數(shù)據(jù)傳輸

通過DSSS,用戶基線數(shù)據(jù)由眾多擴(kuò)頻碼的其中之一調(diào)制。此類代碼也稱為“信道化碼”,每一個(gè)代碼是一個(gè)高速率(3.84兆位/秒)、循環(huán)重復(fù)的偽隨機(jī)二進(jìn)制序列,可“碎化”基線數(shù)據(jù),達(dá)到3.84MHz的帶寬。

圖1(a)展示了數(shù)據(jù)傳輸與數(shù)據(jù)還原時(shí)的波形,此處–1=邏輯0,+1=邏輯1。前三個(gè)曲線表示傳輸過程。曲線1表示用戶基線數(shù)據(jù),曲線2表示分配給每一用戶位的8位擴(kuò)頻碼,曲線3表示曲線2在曲線1處“碎化”后得到的擴(kuò)展信號。曲線3表示傳送的信號。

圖1(a) 通過擴(kuò)頻碼1傳送用戶數(shù)據(jù),接收端用相同代碼產(chǎn)生交叉關(guān)聯(lián)時(shí)還原(標(biāo)記為解擴(kuò)碼1)

接收端利用相同的擴(kuò)解碼(曲線4)結(jié)合傳送信號來恢復(fù)信道數(shù)據(jù),由此標(biāo)記為“解擴(kuò)碼1”。曲線5表示恢復(fù)后的用戶數(shù)據(jù)。這一過程即為“解擴(kuò)”,在數(shù)學(xué)上與解擴(kuò)碼構(gòu)成傳送擴(kuò)頻碼交叉關(guān)聯(lián)。交叉關(guān)聯(lián)在第3頁“正交性”部分作出了闡述,但概括起來,即使擴(kuò)頻碼與解擴(kuò)碼增加異或非門功能。

圖1(b)表示將傳送的擴(kuò)展信號與不同的擴(kuò)解碼結(jié)合后的結(jié)果。前三個(gè)跟蹤曲線表示與圖1(a)相同的傳送過程。不同的是,接收端用標(biāo)記為“解擴(kuò)碼2”的另一解擴(kuò)碼時(shí),數(shù)據(jù)未恢復(fù)(曲線4與5)。


圖1(b) 通過擴(kuò)頻碼1傳送用戶數(shù)據(jù),接收端用解擴(kuò)碼2產(chǎn)生交叉關(guān)聯(lián)時(shí)不恢復(fù)

正交性

WCDMA采用正交可變擴(kuò)頻因子(OVSF)碼,實(shí)現(xiàn)多信道同時(shí)傳輸,并保證信道數(shù)據(jù)速率靈活性。所有的OVSF擴(kuò)頻碼都是“特別的”,相互正交的,即彼此可在3.84MHz傳輸頻帶共存,無交叉干擾。

為實(shí)現(xiàn)正交性,各代碼需具備以下屬性:

• 任意兩種代碼交叉關(guān)聯(lián)=0

• 自相關(guān)性除以每個(gè)數(shù)據(jù)位的碼片位數(shù)量=1

• 必須擁有與-1和1同等數(shù)量的代碼

按照這些規(guī)則,我們將檢驗(yàn)擴(kuò)頻碼1和2作為示例。

按照規(guī)則逐條驗(yàn)證:

(1)交叉關(guān)聯(lián)=0

兩個(gè)數(shù)字序列的交叉關(guān)聯(lián)性是二者相似度的尺度。R(A.B)表示為序列位的乘積之和。

假設(shè)A為圖1(a)中的擴(kuò)頻碼1,B為圖1(b)中的擴(kuò)解碼2,如下所示:

A={-1, 1, 1, -1, 1, -1, -1, 1}

B={1, -1, 1, -1, 1, -1, 1, -1}

R(A.B)={(-1x1)+(1x –1)+(1x1)+(-1x1)+(1x1)+(-1x–1)+(-1x1)+(1x–1)}={0}

如前文所示,利用異或非門,即可在門級輕易實(shí)現(xiàn)交叉關(guān)聯(lián)的函數(shù)。

(2)自相關(guān)性÷每數(shù)據(jù)位的碼片位數(shù)量=1

自相關(guān)本質(zhì)上即是序列的交叉關(guān)聯(lián)函數(shù)。

R(A.A)={(-1x-1)+(1x1)+(1x1)+(-1x-1)+(1x1)+(-1x-1)+(-1x-1)+(1x1)}={8}

R(B.B)={(1x1)+(-1x-1)+(1x1)+(-1x-1)+(1x1)+(-1x-1)+(1x1)+(-1x-1)}={8}

這兩種擴(kuò)頻碼每數(shù)據(jù)位均有8位碼片位,其中每數(shù)據(jù)位的碼片位被稱為擴(kuò)頻因子(SF)。因此自相關(guān)除以SF=1。

(3)擁有同等數(shù)量的-1與1

最后,擴(kuò)頻碼1與擴(kuò)頻碼2擁有相同數(shù)量的-1與1,因此這兩種代碼滿足第三種正交條件。

需要注意的是,遵守規(guī)則即可產(chǎn)生偽隨機(jī)碼,因其類似噪聲被稱為偽噪聲(PN)。

可變擴(kuò)頻因子

如上所示,擴(kuò)頻碼1與擴(kuò)頻碼2均含8位擴(kuò)頻因子。下行鏈路擴(kuò)頻因子取值在4至512之間。在低擴(kuò)頻因子既定的條件下,當(dāng)用戶要求數(shù)據(jù)傳輸更快時(shí),系統(tǒng)可分配用戶不同的數(shù)據(jù)傳輸速率及不同的擴(kuò)頻因子。這正是正交可變擴(kuò)頻因子“可變”由來。注意3.84兆位/秒的碼片速率是恒定的,因此相對于可變SF來說,分配給用戶基帶的數(shù)據(jù)速率是不同的。

直接序列碼擴(kuò)頻后附加了擾碼。擾碼可幫助移動電話識別正在聯(lián)系的基站。

OFDM

演進(jìn)版UMTS無線接入網(wǎng)絡(luò)(EUTRAN)是第4代移動電話系統(tǒng)性能演進(jìn)的產(chǎn)物。以4G LTE面世,采用OFDMA(正交頻分復(fù)用接入)作為下行鏈路方向的空中接口。主要特點(diǎn)是下行鏈路速率可達(dá)到100Mbps、出色的數(shù)據(jù)傳輸(衰減復(fù)原)性能和帶寬可擴(kuò)展(1.25MHz、2.5MHz、5MHz、10MHz、15MHz及20MHz)。

OFDM主要涉及的概念是信號載體部分從單個(gè)高速率數(shù)據(jù)信號到多個(gè)并行低速率信號之間的轉(zhuǎn)換。圖2表示單個(gè)信道被分成多個(gè)并行的子信道,每個(gè)子信道的子載波頻率不同。這種與窄帶子載波間隔緊密的寬帶頻譜即為傳輸信號。間隔緊密提高了系統(tǒng)頻譜效率。



圖2 OFDM信號產(chǎn)生過程圖示

子載波數(shù)據(jù)速率低,因而發(fā)送符號較長,同時(shí)可增加保護(hù)間隔。這使得OFDM可應(yīng)對信道挑戰(zhàn)性要求,如多徑衰落(WCDMA真正存在的一個(gè)問題)、窄帶干擾與符號間干擾,比以往方案更占優(yōu)勢。從而使并行傳輸數(shù)據(jù)的凈數(shù)據(jù)傳輸率等于信號原有的高數(shù)據(jù)速率。

在接收端實(shí)現(xiàn)緊湊的頻譜與信道分離的易用性關(guān)鍵在于子載波間的正交性。

正交性

為便于解釋OFDM概念中的正交性,首先重溫時(shí)域中重復(fù)脈沖的傅里葉變換對,以及在頻域的sinc函數(shù)。圖3表示變換對,其中(a)表示RF頻率(音調(diào))開啟T秒,到下一脈沖時(shí)關(guān)閉,(b)表示頻域等同于以頻率為f的RF脈沖為中心的sinc函數(shù),與零點(diǎn)位置1/T分開。


圖3 RF頻率f赫茲重復(fù)脈沖與T秒持續(xù)時(shí)間

若在相同脈沖周期T內(nèi)引入另一兩倍于第一(即2f)頻率的音調(diào),就會使另一sinc函數(shù)與第一音調(diào)相近,但如圖4所示,最大不會超過2f,且以第一音調(diào)的第一零點(diǎn)位置為中心。由于第二音調(diào)的最大值產(chǎn)生于第一音調(diào)零點(diǎn)位置,所以兩者之間不會產(chǎn)生交叉干擾。在同時(shí)增加更多頻率f(圖4中所示3f)的整數(shù)倍音調(diào)創(chuàng)建緊湊型頻譜時(shí),也同樣適用,音調(diào)之間不會產(chǎn)生交叉干擾。


圖4 頻域里緊湊型正交子載波在f與3f均位于零點(diǎn)位置時(shí)取得最大值2f,因此不會產(chǎn)生交叉干擾。

信道音調(diào)f、2f與3f在時(shí)域中如圖5所示。注意,每個(gè)增加的子信道是基本音調(diào)f的諧波,因此相對所有子信道來說,在脈沖持續(xù)時(shí)間T內(nèi)為完整周期的整數(shù)倍。


圖5 正交子載波時(shí)域顯示(注意:所有子載波在脈沖持續(xù)時(shí)間T內(nèi)擁有完整周期)

解復(fù)用

通過OFDM復(fù)合信號乘以所需子載波音調(diào)與集成數(shù)值(圖6),即可達(dá)到解復(fù)用。

圖6 子信道解復(fù)用概念

解復(fù)用過程中,只有被分離的子載波擁有非零整數(shù),因此分離子載波不會受到其他子載波干擾。版1出示的是非零結(jié)果的簡單數(shù)學(xué)證明過程。


版1:證明音調(diào)乘以T時(shí)內(nèi)本身與集成數(shù)值得出非零數(shù)值。
注意接收到的音調(diào)調(diào)制(QAM,PSK等)被保留下來。

所有其他音調(diào)得出零值,如版2所示。所有信道音調(diào)過程在順序上是重復(fù)的(圖6回形步驟中圓形開關(guān)),恢復(fù)數(shù)據(jù)信號串行發(fā)送,用于解調(diào)。

發(fā)射波形特征

峰值平均功率比 (PAPR)

峰值平均功率比,也稱波峰因數(shù),是復(fù)合信號峰值功率與RMS功率的比率。PAPR由相長干擾引起,以dB為表示單位;在多種同時(shí)發(fā)射的信號相位對準(zhǔn)時(shí)產(chǎn)生高PAPR。

WCDMA與OFDM波形峰值功率與平均功率比率都比較高,WCDMA通常在10dB到11dB,OFDMA通常在12dB到13dB。若偶爾出現(xiàn)的信號峰沒有剔除,這些高比率就意味著選擇放大器的額定功率很有挑戰(zhàn)。具有此類峰值的OFDM信號如圖7所示。


版2:證明音調(diào)乘以諧波與T時(shí)內(nèi)集成數(shù)值得出零值。

圖7 OFDM復(fù)合信號偶爾出示高峰值

ACLR

相鄰信道泄漏比(ACLR)可相對測量泄漏至相鄰信道的信號功率。

WCDMA ACLR限值

信號通過一個(gè)根升余弦濾波器(RRC)、3.84MHz帶寬與滾降因子(α=0.22)進(jìn)行傳遞??墒?.84MHz頻帶擴(kuò)至4.68MHz,每個(gè)信道所分配的頻帶為5MHz。

泄漏至最近的WCDMA信道(測量點(diǎn)距離取5MHz處)的功率ACLR限值為45dBc,其相鄰信道限值為50dBc(測量點(diǎn)距離取10MHz處)的下一個(gè)通道上沿。

圖8所示曲線選自一組標(biāo)示功率放大器的性能曲線。信號分析儀顯示屏上的紅色虛線分別為45dBc和50dBc限值。


圖8 WCDMA功率(黃色追蹤曲線)表示發(fā)送信道、以及泄漏至左側(cè)兩相鄰信道與右側(cè)兩相鄰信道的功率分布狀況。

圖8表示W(wǎng)CDMA功率(黃色追蹤曲線)表示發(fā)送信道、以及泄漏至左側(cè)兩相鄰信道與右側(cè)兩相鄰信道的功率分布狀況。發(fā)送信道的絕對功率(以dBm為單位)用藍(lán)色塊標(biāo)示。相鄰頻帶的相對功率(dBc)也用藍(lán)色塊標(biāo)示。每個(gè)相鄰信道的ACLR限值用紅色標(biāo)示(兩邊最近的信道標(biāo)示的是45dBc,另兩個(gè)較遠(yuǎn)的信道標(biāo)示的是50dBc)

OFDM ACLR限值

限值和測量用濾波器各不相同,取決于相鄰信道是OFDM或WCDMA。為OFDM時(shí),ACLR測量使用方測量濾波器(一個(gè)用于傳輸信道,一個(gè)用于相鄰信道)。當(dāng)相鄰信道是WCDMA時(shí),如上所述ACLR測量使用RRC濾波器。在這兩種情況下OFDM ACLR限值均為45dBc。

放大器的性能特點(diǎn)

在測試WCDMA和OFDMA基站傳輸組件/路徑中,ACLR性能是寬帶放大器的關(guān)鍵屬性。圖9和圖10表示當(dāng)今寬帶放大器的設(shè)計(jì)中砷化鎵(GaAsFET)和氮化鎵(GaN)兩種晶體管技術(shù)采集的ACLR數(shù)據(jù)。

該圖顯示了不同ACLR限值在整個(gè)頻帶放大器可實(shí)現(xiàn)的載波功率。同時(shí)展示了晶體管技術(shù)的可擴(kuò)展特性,該放大器功率為額定功率的兩倍,相同的ACLR會產(chǎn)生雙倍的載波功率。

圖9表示W(wǎng)CDMA ACLR與GaAsFET放大器載波功率特性。該放大器頻率覆蓋范圍0.8GHz~2.0GHz,額定功率為100W P1dB。例如 ACLR為-45dB時(shí),放大器在0.8GHz(藍(lán)色曲線,帶圓點(diǎn)標(biāo)記)時(shí)提供的功率超過42dBm,在2.0GHz(深藍(lán)色曲線,帶圓點(diǎn)標(biāo)記)時(shí)稍低于43dBm。


圖9 WCDMA ACLR與GaAsFET放大器載波功率特性

GaAsFET家庭專用(圖9特征)另一個(gè)重要的通信測試放大器型號為AS0728-180,是一個(gè)700MHz~2800MHz 180W P1dB放大器,可覆蓋目前所有移動電話頻帶(728MHz ~ 2690MHz)。

圖10展示了WCDMA ACLR與GaN放大器載波功率特性。該放大器頻率覆蓋范圍1.8GHz~6.0GHz,額定功率為50W P1dB。例如ACLR為-45dB時(shí),放大器在1.8GHz(淡紫色曲線,帶方形標(biāo)記)時(shí)提供的功率為37.5dBm,在6.0GHz(深藍(lán)色曲線,帶鉆石形標(biāo)記)時(shí)則稍高于34dBm。


圖10 WCDMA ACLR與GaN放大器載波功率特性

總結(jié)

本文一同討論了3G和4G移動電話調(diào)制方案所涉及的關(guān)鍵概念與發(fā)射波形特征。并引入GaAsFET/GaN功率放大器的ACLR屬性和可擴(kuò)展性概念,以支持任何特定的移動電話傳輸應(yīng)用選擇適當(dāng)?shù)墓β蕼y試放大器。

本文為中電網(wǎng)及《世界電子元器件》雜志版權(quán)所有,如轉(zhuǎn)載請務(wù)必注明出處。

本文引用地址:http://2s4d.com/article/201610/308731.htm


關(guān)鍵詞:

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉