新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 你必須知道的MCU外接晶體及振蕩電路

你必須知道的MCU外接晶體及振蕩電路

作者: 時間:2016-09-05 來源:電子產(chǎn)品世界 收藏

  很多開發(fā)者對晶體兩邊要各接一個對地電容的做法表示不理解,因為這個電容有時可以去掉。筆 者參考了很多書籍,卻發(fā)現(xiàn)書中講解的很少,提到最多的往往是:對地電容具穩(wěn)定作用或相當(dāng)于負載電容等,都沒有很深入地去進行理論分析。而另外一方面,很多 愛好者都直接忽略了晶體旁邊的這兩個電容,他們認為按參考設(shè)計做就行了。但事實上,這是,又稱“三點式電容”,如圖1所示。

本文引用地址:http://2s4d.com/article/201609/296534.htm

  

 

  圖1:MCU的三點式電容

  其中,Y1是晶體,相當(dāng)于三點式里面的電感;C1和C2是電容,而5404和R1則實現(xiàn)了一個NPN型三極管(大家可以對照高頻書里的三點式電容振蕩電路)。

  接下來將為大家分析一下這個電路:首先,5404必需搭一個電阻,不然它將處于飽和截止區(qū),而不是放大區(qū),因為R1相當(dāng)于三極管的偏置作用,能讓5404處于放大區(qū)域并充當(dāng)一個反相器,從而實現(xiàn)NPN三極管的作用,且NPN三極管在共發(fā)射極接法時也是一個反相器。

  其 次將用通俗的方法為大家講解一下這個三點式振蕩電路的工作原理。眾所周知,一個正弦振蕩電路的振蕩條件為:系統(tǒng)放大倍數(shù)大于1,這個條件較容易實現(xiàn);但另 一方面,還需使相位滿足360°。而問題就在于這個相位:由于5404是一個反相器,因此已實現(xiàn)了180°移相,那么就只需C1、C2和Y1再次實現(xiàn) 180°移相就可以了。恰好,當(dāng)C1、C2和Y1形成諧振時,就能實現(xiàn)180移相;最簡單的實現(xiàn)方式就是以地作為參考,諧振的時候,由于C1、C2中通過 的電流相同,而地則在C1、C2之間,所以恰好電壓相反,從而實現(xiàn)180移相。

  再則,當(dāng)C1增大時,C2端的振幅增強;當(dāng)C2降低時,振幅也增強。有時即使不焊接C1、C2也能起振,但這種現(xiàn)象不是由不焊接C1、C2的做法造成的,而是由芯片引腳的分布電容引起,因為C1、C2的電容值本來就不需要很大,這一點很重要。

  那 么,這兩個電容對振蕩穩(wěn)定性到底有什么影響呢?由于5404的電壓反饋依靠C2,假設(shè)C2過大,反饋電壓過低,這時振蕩并不穩(wěn)定;假設(shè)C2過小,反饋電壓 過高,儲存能量過少,則容易受外界干擾,還會輻射影響外界。而C1的作用與C2的則恰好相反。在布板的時候,假設(shè)為雙面板且比較厚,那么分布電容的影響則 不是很大;但假設(shè)為高密度多層板時,就需要考慮分布電容,尤其是VCO之類的振蕩電路,更應(yīng)該考慮分布電容。

  因此, 那些用于工控的項目,筆者建議最好不要使用晶體振蕩,而是直接接一個有源的晶振。很多時候大家會采用32.768K的時鐘晶體來做時鐘,而不是通過單片機 的晶體分頻來做時鐘,其中原因想必很多人也不明白,其實上這是和晶體的穩(wěn)定度有關(guān):頻率越高的晶體,Q值一般難以做高,頻率穩(wěn)定度也比較差;而 32.768K晶體在穩(wěn)定度等各方面的性能表現(xiàn)都不錯,還形成了一個工業(yè)標(biāo)準,比較容易做高。另外值得一提的是,32.768K是16 bit數(shù)據(jù)的一半,預(yù)留最高1 bit進位標(biāo)志,用作定時計數(shù)器內(nèi)部數(shù)字計算處理也非常方便。



關(guān)鍵詞: MCU 振蕩電路

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉