新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 基于stm32f4的三維旋轉(zhuǎn)顯示平臺

基于stm32f4的三維旋轉(zhuǎn)顯示平臺

作者: 時間:2016-09-05 來源:網(wǎng)絡 收藏

  3.系統(tǒng)軟件設計

本文引用地址:http://2s4d.com/article/201609/296520.htm

  3.1軟件控制流程:

  

 

  3.2關于實時生成體三維顯示數(shù)據(jù)的討論:

  一個瓦片64*32

  LED層FPGA*8:每個16*16LED

  中間層stm32*2:每個4LED層的FPGA,也即32*32

  由于經(jīng)過壓縮,一個led數(shù)據(jù)為4bits

  所以一個stm32每一幀所要生成的數(shù)據(jù)為32*32*0.5bytes = 512bytes

  轉(zhuǎn)速800轉(zhuǎn),一幀1/800s = 1.25ms = 1250000ns

  主頻168Mhz,指令周期 = 5.93ns

  約可執(zhí)行20萬多條指令

  假設fsmc總線的速度為50Mhz,則每幀寫入的時間大概在0.02ms內(nèi)

  程序總體思路

  事先算出所有電子幀上非零的點,以及連續(xù)0的個數(shù),在每一個電子幀同步后,算出生成下一幀的數(shù)據(jù),寫入fifo

  輸入:線段端點的集合

  //input: endpoints of segments which formed the outline of a 3D model

  //x position with range 0-95

  //y position with range 0-95

  //z position with range 0-128

  /******************************************/

  //from later discussion, one of the Q format

  //type should replace the char type

  /******************************************/

  struct Coordinate_3D

  {

  _iq xPosition;

  _iq yPosition;

  _iq zPosition;

  };

  //after you get the intersection points in 3d coordinate, you need to remap it into 2d coordinate on the very electrical plane,

  //and the conversion is quite simple Coordinate_2D.yPosition = Coordinate_3D.zPosition; Coordinate_2D.xPosition = sqrt(xPosition^2+yPosition^2)

  struct Coordinate_2D

  {

  char xPosition;

  char yPosition;

  };

  struct Line

  {

  struct Coordinate_3D beginPoint;

  struct Coordinate_3D endPoint;

  unsigned char color;

  };

  //frame structure to store the visible points in one electrical frame

  //need to be discussed

  //here's the prototype of the Frame structure, and basically the frame struture should contain the visible points,

  //and the zero points. As we have enclosed the number of zero points after each visible points in their own data structure,

  //only the number of zero points at the beginning of the whole frame should be enclosed in the frame struture

  struct Frame

  {

  int zerosBefore;

  PointQueue_t visiblePointQueue;

  };

  //we need a union structure like color plane with bit fields to store the color imformation of every four FPGAs in one data segment

  //actually, it's a kind of frustrateing thing that we had to rebind the data into such an odd form.

  union ColorPalette

  {

  struct

  {

  unsigned char color1 : 4;

  unsigned char color2 : 4;

  unsigned char color3 : 4;

  unsigned char color3 : 4;

  }distributedColor;

  unsigned short unionColor;

  };

  //and now we need a complete point structure to sotre all the imformation above

  //here we add a weight field = yPosition*96 + xPosition, which will facilitate

  //our sort and calculation of the zero points number between each visible point

  //it's important to understand that, 4 corresponding points on the LED panel

  //will share one visiblepoint data structure.(一塊stm32負責4塊16*16的LED,每塊對應的點的4位顏色信息,拼成16位的數(shù)據(jù)段)

  struct VisiblePoint

  {

  struct Coordinate_2D coord;

  union Colorplane ColorPalette;

  int weight;

  int zerosAfter;

  };

  //as now you can see, we need some thing to store the visible points array

  typedef struct QueueNode

  {

  struct VisiblePoint pointData;

  struct QueueNode * nextNode;

  }QueueNode_t, *QueueNode_ptr;

  typedef struct

  {

  QueueNode_ptr front;

  QueueNode_ptr rear;

  }PointQueue_t;

  //finally, we will have 16*16 words(16 bits)to write into the fifo after each electrial frame sync cmd.

  //it may hard for us to decide the frame structure now, let's see how will the work flow of the algorithm be.

  //firstly, the overall function will be like this

  void Real3DExt(struct Line inputLines[], int lineNumber, struct Frame outputFrames[])

  //then we need some real implementation function to calculate the intersection points

  //with 0 = no intersection points, 1 = only have one intersection points, 2 = the input line coincides the given electrical plane

  //2 need to be treated as an exception

  //the range of the degree is 0-359

  //it's important to mention that each intersection point we calculate, we need to

  //remap its coordinate from a 32*32 field to x,y = 0-15, as each stm32 only have a 32*32

  //effective field(those intersection points out of this range belong to other stm32), which can be decided by its address

  int InterCal(struct Line inputLine, struct VisiblePoint * outputPoint, int degree)

  //so we will need something like this in the Real3DExt function:

  for (int j = 0; j < 360; j++)

  {

  for(int i = 0; i < lineNumber; i++ )

  InterCal(struct Line inputLine, struct VisiblePoint outputPoint, int degree);

  ......

  }

  /******************************************/

  //simple float format version of InterCal

  /******************************************/

  //calculate formula

  //Q = [-1,1,-1];

  //P = [1,1,-1];

  //V = Q - p = [-2,0,0];

  //Theta = pi/6;

  //Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);

  //Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);

  //Result = Q - (Tmp0/Tmp1)*V

  float32_t f32_point0[3] = {-1.0f,1.0f,-1.0f};

  float32_t f32_point1[3] = {1.0f,1.0f,-1.0f};

  float32_t f32_directionVector[3], f32_normalVector[3], f32_theta,

  f32_tmp0, f32_tmp1, f32_tmp2, f32_result[3];

  arm_sub_f32(f32_point0,f32_point1,f32_directionVector,3);

  f32_theta = PI/6.0f;

  f32_normalVector[0] = arm_sin_f32(f32_theta);

  f32_normalVector[1] = arm_cos_f32(f32_theta);

  f32_normalVector[2] = 0.0f;

  arm_dot_prod_f32(f32_point0, f32_normalVector, 3, &f32_tmp0);

  arm_dot_prod_f32(f32_directionVector, f32_normalVector, 3, &f32_tmp1);

  f32_tmp2 = f32_tmp0/f32_tmp1;

  arm_scale_f32(f32_normalVector, f32_tmp2, f32_normalVector, 3);

  arm_sub_f32(f32_point0, f32_normalVector, f32_result, 3);

  //and than we need to decide whether to add a new visible point in the point queue, or to update

  //the color field of a given point in the point queue(as 4 visible point share one data structure). from this point, you will find that, it may be

  //sensible for you not to diretly insert a new point into the end of point queue but to insert it in order

  //when you build the pointqueue. it seems more effective.

  void EnPointQueue(PointQueue_t * inputQueue, QueueNode_t inputNode);

  //finally we will get an sorted queue at the end of the inner for loop

  //than we need to calculate the number of invisible points between these visible points

  //and to store it in each frame structure. the main purpose to do so is to offer an quick generation

  //of the blank point(color field = 16'b0) between each electrical frame

  //the work flow will be like this:

  loop

  {

  dma output of the blank points;

  output of the visible points;

  }

  /******************************************/

  //some points need more detailed discussion

  /******************************************/

  //1.memory allocation strategy

  //a quite straight forward method will be establishing a big memnory pool in advance, but the drawback of this method

  //is that it's hard for you to decide the size of the memory pool. Another way would be the C runtime library method,

  // and you can use build-in function malloc to allocate the memory, but it will be a quite heavy load for the m3 cpu

  // as you need dynamic memeory allocation throughout the algorithm.

  //2.the choice of Q format of the IQMATH library

  //from the discussion above, the range of the coordnate is about 1-100, but the range of sin&cos is only 0-1,so there's a large gap between them.

  //may be we can choose iq24?? Simultaneously, another big problem will be the choice between IQMATH and arm dsp library as their q format is

  //incompatible with each other. as far as my knowledge is concerned, we should choose IQMATH with m3 without fpu, and cmsis dsp library with m4 with fpu.

  //more detail discussion about the range of the algorithm

  //x,y range is -64 to 64

  //the formula is

  //Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);

  //Tmp0 range is -128 to 128

  //Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);

  //Tmp1 range is -128 to 128

  //Result = Q - (Tmp1/Tmp2)*V

  //because the minimal precision of the coordinate is 1, so if the result of Tmp1/Tmp2 is bigger than 128, the Result will be

  //saturated. With the same reson, if (Tmp1/Tmp2)*V >= 128 or <= -127, the result will be saturated

  4.系統(tǒng)創(chuàng)新

  其一,由于高效解析算法的提出,大幅簡化了真三維顯示器顯示數(shù)據(jù)的獲取難度,只需在PC端獲得當前較為標準化的三維圖形的三角面頂點數(shù)據(jù)流文件,即可在真三維顯示平臺上顯示出來,使得真三維顯示器的整體顯示流程大為簡化。

  其二,由于顯示體的結(jié)構(gòu)分為并行的若干區(qū)塊,各個區(qū)塊只顯示自身的部分,因此顯示屏幕的擴大并不會造成數(shù)據(jù)計算量的大幅增加,這就使得本顯示器的擴展性大大增強,可以適用于多種多樣的顯示范圍與領域。

  其三,由于高效算法的優(yōu)化與區(qū)塊化顯示的優(yōu)勢,并行結(jié)構(gòu)的計算量相對較少,這就使得實時控制得以實現(xiàn),大大增強了真三維顯示器的應用領域。

  其四,高效算法與區(qū)塊化顯示使得本三維體顯示器不需要如國內(nèi)外其他同類產(chǎn)品的中所需的高速傳輸方式,因此大大減少了從產(chǎn)品研發(fā)到材料再到加工中各個環(huán)節(jié)的成本。

  5.評測與結(jié)論

  在作品的過程中,我們發(fā)現(xiàn)本作品雖然還不是很成熟,也同樣具備較大的應用前景與價值。價格成本的極大降低,使得真三維立體顯示的門檻很低,那么在一些對清晰度要求不高,但是希望多層次全角度呈現(xiàn)三維圖像的應用領域,我們的真三維立體顯示器能發(fā)揮較大的作用。

  附錄

  

 

  

 

  


上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉