探討有關LED照明中陶瓷材料的應用研究
LED是一種新型固態(tài)光源,自問世以來受到了極大的關注。它的發(fā)光機理是靠PN結中的電子在能帶間躍遷產生光能。在外電場的作用下,電子與空穴的輻射復合發(fā)生電致作用,一部分能量轉化為光能,無輻射復合產生的晶格震蕩將其余能量轉化為熱能。
本文引用地址:http://2s4d.com/article/200572.htm目前LED的發(fā)光效率僅20%~30%,其余能量大多轉化為熱能,大量的熱能需要及時地散發(fā)出去,否則將會使LED的壽命減少,甚至永久性失效。所以,在LED快速發(fā)展的同時,人們也不斷進行著LED散熱新技術的研究。
金屬鋁材憑借著密度小、熱導率高、表面處理技術成熟的優(yōu)勢,一直占據著LED照明主體材料的市場。隨著人們對安全性能要求的提高,鋁材的導電性成為其一道致命的傷疤,為了提高LED照明燈具(下文簡稱為LED燈具)的使用安全性,電絕緣材料引起了人們的重視。
開始嶄露頭角的電絕緣材料有陶瓷材料和高熱導塑料。人類對陶瓷材料的使用已有幾千年了,現代技術制備的陶瓷材料有著絕緣性好、熱導率高、紅外輻射率大、膨脹系數低的特點,完全可以成為LED照明的新材料。
陶瓷材料的傳熱機理
陶瓷屬于非金屬材料,晶體結構中沒有自由電子,具有優(yōu)秀的絕緣性能。它的傳熱屬于聲子導熱機理,當晶格完整無缺陷時,聲子的平均自由程越大,熱導率就越高。理論表明,陶瓷晶體材料的最大導熱系數可高達320W/mK。
一般認為,在影響陶瓷材料導熱率的諸多因素中,結構缺陷是主要的影響因素。在燒結的過程中,氧雜質進入陶瓷晶格中,伴隨著空位、位錯、反相疇界等結構缺陷,顯著地降低了聲子的平均自由程,導致熱導率降低?,F代陶瓷技術通過生成第二相,把氧固定在晶界上,減少了氧雜質進入晶格的可能性,隨著晶界處的氧濃度大大降低,晶粒內部的氧自發(fā)擴散到晶界處,使晶粒基體內部的氧含量降低,缺陷的數量和種類減少,從而降低聲子散射幾率,增加聲子的平均自由程。由于制備技術的不同,陶瓷材料的熱導率也不一樣。
燈具型號為GU10,外形尺寸49.5mm×50mm,鰭片散熱器和燈座均采用95陶瓷材料,并通過螺紋連接。
燈具安裝三顆Handson(漢德森)LED光源,內置恒流驅動電源,總消耗功率約3.55W,采用透鏡配光,總光通量約150lm。
目前,陶瓷材料主要用于LED封裝芯片的熱沉材料、電路基板材料和燈具散熱器材料。高熱導塑料憑借著其優(yōu)良的電絕緣性和低密度值,高調地進入了散熱材料市場,現階段由于價格高,應用率不大。本文主要討論陶瓷材料在LED照明中的應用技術。
評論