邊緣檢測算法在醫(yī)學(xué)超聲液性病變圖像中的應(yīng)用
1.1.3 Prewitt算子
Prewitt和Sobel算子都是使用3×3模板的一階微分算子,它們是在研究曲面擬合的基礎(chǔ)上提出的。擬合是指已知某連續(xù)函數(shù)的一系列離散函數(shù)值,通過最小二乘法等準(zhǔn)則來確定該函數(shù)中的待定系數(shù)。Prewitt和Sobel算子的2個差分模板的系數(shù)之間的區(qū)別僅在于求平均的方法不同。隨后出現(xiàn)的Kirseh算子用不等權(quán)的8個3×3循環(huán)平均梯度算子分別與圖像進行卷積,取其中的最大值輸出,它可以檢測各個方向上的邊緣,減少了由于平均而造成的細(xì)節(jié)丟失,但同時增加了計算量。
1.2 基于二階微分的邊緣檢測算法
前面討論了基于一階微分的邊緣檢測,如果所求的一階微分高于某一閾值,則確定該點為邊緣點。一階微分組成的梯度是一種矢量,不但有大小還有方向,和標(biāo)量比較,數(shù)據(jù)存儲量比較大。一種更好的方法就是求梯度局部最大值對應(yīng)的點,并認(rèn)定它們是邊緣點,通過去除一階微分中的非局部最大值,可以檢測出更精確的邊緣。一階微分的局部最大值對應(yīng)著二階微分的零交叉點,這意味著在邊緣點處有一階微分的峰值,同樣地,有二階微分的零交叉點。這樣,通過找圖像強度的二階微分的零交叉點就能找到邊緣點。
在二維空間,對應(yīng)二階微分有兩種算子:Laplace算子和Marr算子。Laplace算子也稱拉氏算子,它的特點是具有旋轉(zhuǎn)對稱性而不具備方向性,只需要一個3×3模板。Laplaee算子是對二維函數(shù)進行運算的二階導(dǎo)數(shù)算子,與方向無關(guān),對取向不敏感,因而計算量要小。根據(jù)邊緣的特性,Laplace算子可以作為邊緣提取算子,計算數(shù)字圖像的Laplaee值可以借助模板實現(xiàn),但是它對噪聲相當(dāng)敏感,它相當(dāng)于高通濾波,常會出現(xiàn)一些虛假邊緣。由于Laplace算子存在著諸多缺陷,它一般并不直接應(yīng)用于邊緣檢測,而是結(jié)合其它方法以提高邊緣的定位精度。而Marr算子就是在Laplace算子基礎(chǔ)上改進,由于它使用的是高斯型的Laplace模板,因此又被稱作LOG算子,先對圖像用Gauss函數(shù)進行平滑,然后利用Laplace算子對平滑的圖像求二階導(dǎo)數(shù)后得到的零交叉點作為待選邊緣。LOG算子就是對圖像進行濾波和微分的過程,是利用旋轉(zhuǎn)對稱的LOG模板與圖像做卷積,確定濾波器輸出的零交叉位置。
1.3 Canny算子
Canny算子是最常用的邊緣檢測方法之一,是一個具有濾波、增強和檢測的多階段的優(yōu)化算子。
該算法的基本過程如圖1所示。本文引用地址:http://2s4d.com/article/193780.htm
Canny算子檢測邊緣的實質(zhì)是求信號函數(shù)的極大值問題來判定圖像邊緣像素點?;静襟E為:
(1)用高斯濾波器平滑圖像;
(2)用一階偏導(dǎo)的有限差分來計算梯度的幅值和方向;
(3)對梯度幅值進行非極大值抑制;
(4)用雙閾值算法檢測和連接邊緣。Canny算子能夠得到連續(xù)完整的圖像,但需要注意的問題是:Gauss濾波的尺度,以及雙閾值的選擇。
1.4 基于Snake模型的邊緣檢測算法
Snake模型是1987年由Kass提出的,它的基本思想是以構(gòu)成一定形狀的控制曲線為模板(或者稱為輪廓線),通過模板自身的彈性形變與圖像局部特征相匹配達到調(diào)和,即某種能量函數(shù)極小化,完成對圖像邊緣的提取,通過對模板的進一步分析而實現(xiàn)圖像的理解和識別。能量最小化模型已經(jīng)有了很長的發(fā)展歷史,Kass對其進行了改進,采用動態(tài)調(diào)整的方法來實現(xiàn)它,對圖像的高層信息進行分析和提取而不至于受到太多低層信息的影響。通過在原始的最小化函數(shù)中加入外力因子,可以引導(dǎo)初始化的輪廓線朝著特定的方向前進,最后達到提取目標(biāo)邊界的目的。
1.4.1 基本Snake模型
Kass等提出的基本Snake模型由一組控制點組成,即v(s)=(x(s),y(s)),s∈[0,1],其中x(s)和y(s)分別表示每個控制點在圖像中的坐標(biāo)位置,s是以傅立葉變換形式描述邊界的自變量。其對應(yīng)的能量函數(shù)定義為:
式中:Eint為曲線的內(nèi)部能量;Eext為外部能量。
內(nèi)部能量定義為:
式中|vs(s)|為彈性能量,是曲線相對于弧長的一階導(dǎo)數(shù)的模,受彈性系數(shù)的調(diào)節(jié),控制著曲線的張力。|vss(s)|是彎曲能量,是曲線相對于弧長的二階導(dǎo)數(shù)的模,受剛性系數(shù)的調(diào)節(jié),控制曲線的變形程度。
對于普通的灰度圖像I(x,y),典型的外部能量(外部力)表達有如下2種定義:
式中為梯度算子,是方差為σ的二維高斯函數(shù)。在圖像邊緣區(qū)域,圖像灰度值的梯度往往較大,取反后計算以滿足能量最小的要求。
評論