直流和脈沖電鍍Cu互連線的性能比較
隨著芯片集成度的不斷提高,Cu已經(jīng)取代A1成為超大規(guī)模集成電路互連中的主流互連材料。在目前的芯片制造中,芯片的布線和互連幾乎全部是采用直流電鍍的方法獲得Cu鍍層。在直流電鍍中,由于金屬離子趨近陰極不斷被沉積,因而不可避免地造成濃差極化。而脈沖電鍍在電流導通時,接近陰極的金屬離子被充分地沉積;當電流關斷時,陰極周圍的放電離子又重新恢復到初始濃度。脈沖電鍍的主要優(yōu)點有:降低濃差極化,提高了陰極電流密度和電鍍效率;改善鍍層物理性能;所得鍍層具有較好的防護性;能獲得致密的低電阻率金屬沉積層。
脈沖電鍍理論20世紀初就已被提出。近幾年來,國外陸續(xù)發(fā)表了一些關于脈沖電鍍在集成電路Cu互連應用中的研究。目前國內(nèi),針對脈沖電鍍Cu的研究主要集中在冶金級電鍍和印刷電路板(PCB)布線方面,幾乎沒有關于脈沖電鍍應用于集成電路Cu互連的文獻報道。而在集成電路(IC)制造采用的是成熟的直流電鍍工藝。PCB中線路的特征尺寸約為幾十微米,而芯片中Cu互連的特征尺寸是1μm,因此對亞微米級厚度Cu鍍層的性能研究顯得尤為必要。本文將針對集成電路芯片Cu互連技術,研究分別用脈沖電鍍和直流電鍍沉積得到的Cu鍍層性能。
1 實驗
采用200 mm p型(100)Si片,首先在Si片上PECVD(concept one 200 mm dielectric system,Novellus)淀積800 nm SiO2介質層。接著用PVD(Invoa 200,Novellus)濺射25 nm的TaN/Ta擴散阻擋層,然后用PVD濺射50 nm的Cu籽晶層。在電解槽中,陽極為高純度的Cu棒,外面包裹一層過濾膜,其作用是電鍍時阻止固態(tài)不溶性雜質顆粒進入Cu鍍層,影響鍍層性能。將經(jīng)PVD濺射好Cu籽晶層的200 mm Si片切片后的小矩形片作為陰極(5 cm×2 cm)。電解槽底部靠近陰極處有一個磁力攪拌子,電鍍時置于電解槽下面的磁力攪拌儀產(chǎn)生磁場,驅動攪拌子勻速轉動,轉速設定為400r/min,這可以使電鍍過程中陰極附近電解液中的Cu離子濃度保持正常,降低濃差極化和提高陰極電流密度,加快沉積速度。
電鍍液成分為Cu2+17.5 g/L,H2S04 175 g/L,Cl一50 mg/L,加速劑2 mL/L,抑制劑8 mL/L和平整劑1.5 mL/L(添加劑均來自美國Enthone公司)。Cl一能提高鍍層光亮度和平整性,降低鍍層的內(nèi)應力,增強抑制劑的吸附。加速劑通常是含S或其他官能團的有機物,包括硫脲及其衍生物,它的作用是促進Cu的成核,使各晶面生長速度趨于均勻。抑制劑包括聚乙二醇(PEG)、聚丙烯二醇和聚乙二醇的共聚物等,它的作用是和Cl一一起在陰極表面上形成一層連續(xù)膜以阻止Cu的沉積。平整劑通常是雜環(huán)化合物,一般含有N原子,它的作用是降低鍍層表面粗糙度。
對于脈沖電鍍,考慮到鍍層與電解液界面間存在電位差,會在鍍層表面形成一個雙電層,其作用等效于一個電容,脈沖頻率如果太大,雙電層電容在脈寬和脈間內(nèi)來不及充放電,此時的脈沖電流將接近于直流電流。但如果脈沖頻率太小,電流效率就會變得很低,因此脈寬和脈間的時間一般都選在毫秒級。根據(jù)文獻的研究結果,固定ton=8ms,toff=2ms,研究不同平均電流密度的影響。實驗中通過設置不同的電流密度以及相對應的電鍍時間,將Cu鍍層厚度都較嚴格地控制在1μm。實驗中使用方波脈沖,測量的Cu鍍層薄膜參數(shù)包括電阻率、XRD、SEM和AFM。
2 結果和討論
2.1 電阻率測量結果
圖1是電沉積Cu層電阻率與電流密度之間的關系??梢姡}沖電鍍得到的Cu鍍層電阻率小于相同電流密度下的直流鍍層。在小電流密度時(2 A/dm2),直流鍍層和脈沖鍍層的電阻率都較大。
2.2 XRD測量結果
在XRD測量中,以晶面(hkl)的織構系數(shù)TC(texture coefficient)來表征晶面擇優(yōu)程度。
式中:I(hkl)、I0(hkl)分別表示沉積層試樣和標準試樣(hkl)晶面的衍射線強度;n為衍射峰個數(shù)。當各衍射面的TC值相同時,晶面取向是無序的,如果某個(hkl)面的TC值大于平均值,則該晶面為擇優(yōu)取向。晶面的TC值越大,其擇優(yōu)程度越高。
圖2中(a)和(b)分別為直流鍍層和脈沖鍍層織構系數(shù)與電流密度的關系。(111)晶面抗電遷移的能力是(200)晶面的4倍,因此(111)晶面更有利于互連。兩張圖的變化趨勢類似,主要晶面都是(111)和(200),但直流鍍層中(111)的擇優(yōu)程度較脈沖鍍層稍好。通過對Cu種籽層進行XRD后發(fā)現(xiàn),籽晶Cu中(200)晶面呈現(xiàn)絕對擇優(yōu)。因此,XRD的結果表明,直流電鍍的晶面抗電遷移的能力要優(yōu)于脈沖電鍍。由于1 μm的Cu電鍍層太薄,鍍層受到較強基體效應的影響,電沉積條件對晶面的影響很小,因此籽晶層的晶面在很大程度上決定了鍍層的晶面情況。有文獻報道,當Cu鍍層超過4 μm后,就基本不受基體外延的影響,而主要由電沉積條件決定,形成絕對優(yōu)勢的擇優(yōu)晶面取向。
評論