新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 一種基于CPLD的16位VFC式AD轉(zhuǎn)換器設計

一種基于CPLD的16位VFC式AD轉(zhuǎn)換器設計

作者: 時間:2012-09-06 來源:網(wǎng)絡 收藏

隨著科技的飛速發(fā)展、高分辨率的數(shù)?;旌想娐返膽貌粩嗌钊耄娐吩O計日趨復雜,精度越來越高,所以高精度AD轉(zhuǎn)換電路的設計就成了儀器儀表及各種測量控制系統(tǒng)的難點。本系統(tǒng)來源于儀器儀表的溫控系統(tǒng)設計,采用高精度、低溫漂的優(yōu)質(zhì)模擬、數(shù)字器件,輔以52系列單片機為控制器,以復雜可編程邏輯器件 (Comp lex Programmable Array Logic)為頻率測試的硬件平臺,實現(xiàn)了高分辨率、低線性誤差的的設計。通過本設計掌握高精度、低漂移的高端的設計方法, 的設計,以及52系列單片機的硬件設計及軟件編程。

本文引用地址:http://2s4d.com/article/185787.htm

  1 系統(tǒng)功能及結(jié)構(gòu)

  系統(tǒng)主要目的是設計一個16位的,利用積分原理,將輸入電壓(或電流)轉(zhuǎn)換成頻率輸出。采用計數(shù)頻率高的器件實現(xiàn)測頻,單片機控制CPLD的測頻操作和頻率的計算。

  用V /F轉(zhuǎn)換器完成AD轉(zhuǎn)換,需要1個定時器和2路計數(shù)器,計數(shù)器的計數(shù)頻率限制了V /F器件輸出頻率的提高。本設計采用計數(shù)頻率更高的CPLD器件和單片機共同組成測速模塊, CPLD通用性好,避免了對于專用器件的依賴,降低了因?qū)S闷骷.a(chǎn)或出現(xiàn)供貸問題所帶來的風險,同時實現(xiàn)所需的控制。

  式AD 轉(zhuǎn)換器脈沖頻率與輸入電壓成比例,其精度高、線性度好、轉(zhuǎn)換速度居中、轉(zhuǎn)換位數(shù)與速度可調(diào)、與CPU的連線最少,且增加轉(zhuǎn)換位數(shù)時不會增加與CPU的連線,因此, 為AD 轉(zhuǎn)換技術提供了一種廉價而有效的解決辦法。

  系統(tǒng)總體可以劃分為電壓采樣部分、模擬- 數(shù)字轉(zhuǎn)化部分,控制部分。其中電壓采樣部分包括:精密測試電壓源。模擬- 數(shù)字轉(zhuǎn)化部分包括:電壓放大和偏置,V /F轉(zhuǎn)換模塊,計數(shù)轉(zhuǎn)化模塊。控制部分包括:控制器模塊,鍵盤,顯示模塊,系統(tǒng)原理框如圖1所示。

  為實現(xiàn)各模塊的功能,分別選取了較好的方案實現(xiàn): ①精密基準源,精密低溫漂高檔基準源,分壓;②電壓放大及偏置,運算放大器ICL7650; ③V /F轉(zhuǎn)換,采用AD652芯片; ④頻率測試,采用CPLD (復雜可編程邏輯器件) ; ⑤控制器,采用凌陽的SPEC061A單片機; ⑥顯示,采用液晶屏; ⑦電氣隔離,采用光電耦合,所設計的系統(tǒng)如圖2所示。

  系統(tǒng)原理框圖

  圖1 系統(tǒng)原理框圖

  所設計的系統(tǒng)框圖

  圖2 所設計的系統(tǒng)框圖

  2 系統(tǒng)硬件設計

  2. 1 精密測試基準源

  對于16位的AD轉(zhuǎn)換器,滿幅度輸入電壓僅為100 mV,如果要測試它的性能,則需要極高精度和非常低溫漂的基準源, 電路原理如圖3 所示。

  AD586是AD公司高精度5 V的基準電壓源,溫漂低至2 10 - 6 /℃,噪聲為100 nV /Hz,通過固定電阻和可調(diào)電阻進行分壓產(chǎn)生0 ~100 mV 的電壓。為了增加電壓的負載能力,須進行電壓跟隨。OPA333是零漂移精密運放,漂移最大為0. 05μV /℃。同時采用兩個2. 5 V的基準源LM336以降低電源波動的影響。LM336 的輸出電流為10 mA, 可滿足OPA33的需要。分壓用的電阻為指針式10 圈可調(diào),可以達到理想的精度。

  基準源電路原理圖

  圖3 基準源電路原理圖

2. 2 電壓的放大及偏置

  0~100 mV 的電壓不能直接送給V /F 變換AD652,而必須經(jīng)過精密放大和進行電位的偏置,這樣才能達到設計的精度。選擇具有斬波穩(wěn)定功能的ICL7650運算放大器,它可以提供低的偏置電 流(10pA) 、偏置電壓和相對時間、溫度的穩(wěn)定性。輸入的0~100 mV電壓經(jīng)過40倍的放大后,產(chǎn)生0~4 V的輸出,因為AD652在0 V輸入的情況下,輸出頻率也是0,這樣計數(shù)得到頻率難以達到16 位的精度,所以將輸入(0~4 V)的直流偏置設置為1 V,從而產(chǎn)生1~5 V的輸入信號送給AD652;運放的電阻須選用1 /1 000 精度的,保證了V /F變換的精度。

  其原理圖如圖4所示。

  電壓放大偏置原理圖

  2. 3 V /F轉(zhuǎn)換電路

  電壓/頻率轉(zhuǎn)換即V /F轉(zhuǎn)換,是將一定的輸入電壓信號按線性的比例關系轉(zhuǎn)換成頻率信號,當輸入電壓變化時,輸出頻率也響應變化。

  本設計采用專用集成芯片AD652,輔以的外圍電路即可實現(xiàn)V /F轉(zhuǎn)換,如圖5所示。AD652是美國ANALOG DEV ICES公司推出的高精度電壓頻率(V /F)轉(zhuǎn)換器,它由積分器、比較器、精密電流源、單穩(wěn)多諧振蕩器和輸出晶體管組成。該電路在±15 V電源電壓下,功耗電流小于15 mA,滿刻度為1 MHz時其非線性度小于0. 07 % , 最佳溫度穩(wěn)定性為±150 ppm /℃。用AD652實現(xiàn)V /F轉(zhuǎn)換,可以滿足較高的滿刻度頻率響應和較低的最佳溫度穩(wěn)定性。

  V /F轉(zhuǎn)換電路

  圖5 V /F轉(zhuǎn)換電路

  由于使用外部時鐘設置滿量程輸出頻率,AD652可以獲得更高的線性度和穩(wěn)定性。通過使用同一時鐘驅(qū)動AD652和設置計數(shù)時間閘門,轉(zhuǎn)換精度與時鐘頻率無關,不因時鐘頻率的改變而改變。

  2. 4 基于CPLD的頻率計電路

  在本系統(tǒng)中, CPLD采用美國XIL INX公司生產(chǎn)的XC95108CPLD (復雜可編程邏輯器件) ,其片內(nèi)有108個宏, 2 400個門,頻率可以達125 MHz,引腳間延時715 ns,供電電壓5 V或313 V的在系統(tǒng)可編程器件,其可供用戶使用的I/O口數(shù)在64個以上。

  XC95108采用FLASH編程工藝,可反復擦寫,所設計的電路如圖6所示。

  由于輸入的信號是交流信號而CPLD (可編程邏輯器件)和施密特觸發(fā)器是數(shù)字芯片,不識別負信號,需將輸入交流信號變?yōu)橹绷餍盘枺脙蓚€電阻實現(xiàn)電壓鉗位功能,鉗位后的信號經(jīng)7414 (施密特觸發(fā)器)整形為方波后直接輸入CPLD 對其計數(shù)。

  由于CPLD可以實現(xiàn)高速響應,可以實現(xiàn)準確計數(shù)。

  頻率計測得的數(shù)據(jù)為此系統(tǒng)的AD轉(zhuǎn)換結(jié)果,轉(zhuǎn)換精度受基準晶振和AD652的V /F滿刻度時的量程的影響,由于CPLD 的基準晶振選用的是20MHz的高精度晶振。設計的AD 轉(zhuǎn)換頻率為50kHz,所以在計數(shù)周期內(nèi)基準晶振脈沖個數(shù)為400,CPLD因為隨機時間出現(xiàn)的誤差僅為一個脈沖,而AD652的滿刻度頻率高,可達 1MHz,所以精度可達到幾千分之一。

adc相關文章:adc是什么


施密特觸發(fā)器相關文章:施密特觸發(fā)器原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉