便攜式系統(tǒng)電源拓?fù)浞桨高x擇的分析
本文將討論各種電源便攜式設(shè)備的電源電壓)時(shí)的利弊。本文還將說明降壓/升壓轉(zhuǎn)換器的不同應(yīng)用,并解釋降壓/升壓轉(zhuǎn)換器的解決方案需“量身定做”的原因。
從圖1可以看出,將鋰離子電池電壓轉(zhuǎn)換為3.3V電壓軌的設(shè)計(jì)很有挑戰(zhàn)。在充滿電的情況下,典型的鋰離子電池放電曲線的起始電壓為4.2V。X軸起始點(diǎn)為“-5分鐘”,對(duì)應(yīng)的電壓為電池充滿電時(shí)的開路電壓。在“0分鐘”時(shí),電池接入負(fù)載,由于內(nèi)部阻抗以及保護(hù)電路的作用,電壓開始下降。電池電壓緩慢降至約3.4V,然后電壓開始快速下降,原因是放電周期已接近終點(diǎn)。為充分利用電池儲(chǔ)存的電量,3.3V電壓軌需要在放電周期的大部分時(shí)間里使用步降轉(zhuǎn)換器,而在放電周期的剩余時(shí)間里使用升壓轉(zhuǎn)換器。
圖 1:1650mA-hr 18650 鋰離子電池放電曲線。
鋰離子電池電壓如何有效生成3.3V電壓軌的問題由來已久,其解決方案也是多種多樣。本文討論幾個(gè)常用解決方案,包括級(jí)聯(lián)降壓與升壓、降壓/升壓、降壓以及LDO電源系統(tǒng)運(yùn)行時(shí)間的測量與對(duì)比。
級(jí)聯(lián)降壓與升壓轉(zhuǎn)換器解決方案
級(jí)聯(lián)降壓與升壓轉(zhuǎn)換器包含降壓轉(zhuǎn)換器和升壓轉(zhuǎn)換器兩個(gè)獨(dú)立且分離的轉(zhuǎn)換器。降壓轉(zhuǎn)換器將電壓穩(wěn)定在中電壓(如1.8V),而升壓轉(zhuǎn)換器則將中電壓升高至3.3V。由于能夠100%地利用電池電量,所以該架構(gòu)非常適用于要求較低電壓軌的系統(tǒng)。但由于采用了兩段轉(zhuǎn)換機(jī)制,從效率的角度考慮,這并不是最佳解決方案。
有效的功率轉(zhuǎn)換效率是降壓穩(wěn)壓器效率與升壓穩(wěn)壓器效率之積。工作在上述電壓條件下,降壓與升壓轉(zhuǎn)換器的典型效率值均為90%,因此3.3V轉(zhuǎn)換器的有效功率轉(zhuǎn)換效率為90%×90%=81%。由于該架構(gòu)包含兩個(gè)獨(dú)立的轉(zhuǎn)換器,所以元件數(shù)量與系統(tǒng)體積均增加了,不但難以應(yīng)用在小型便攜式產(chǎn)品中,而且還增加了成本。
獨(dú)立的降壓轉(zhuǎn)換器解決方案
采用降壓轉(zhuǎn)換器也能使鋰離子電池電壓轉(zhuǎn)換成3.3V電壓,但該方案常常被忽略,并未得到廣泛應(yīng)用。設(shè)計(jì)工程師在觀察電池放電曲線(如圖1所示)后一般會(huì)放棄這個(gè)解決方案,這是因?yàn)閺碾姵赝耆烹娗€(如圖1所示)可看出,降壓穩(wěn)壓器無法生成3.3V電壓軌。當(dāng)降壓轉(zhuǎn)換器的輸入電壓下降到接近輸出電壓時(shí),很多降壓轉(zhuǎn)換器會(huì)進(jìn)入100%占空比模式。在此條件下,轉(zhuǎn)換器停止轉(zhuǎn)換,將輸入電壓直接進(jìn)行輸出。在100%占空比模式下,輸出電壓等于輸入電壓減去轉(zhuǎn)換器的壓降。該壓降由(MOSFET導(dǎo)通電阻、輸出電感的直流電阻及負(fù)載電流決定,這樣便設(shè)定了仍處于穩(wěn)壓范圍的最小電池電壓。假設(shè)系統(tǒng)認(rèn)為3.3V電壓軌下降5%仍處于穩(wěn)壓范圍,則用下面等式可計(jì)算出系統(tǒng)工作的最小電池電壓。
Vbattery_min=Vout_nom×0.95+(Rdson+RL)×Iout(1)
其中:Vout_nom為額定值3.3V,Rdson為功率MOSFET導(dǎo)通電阻,RL為輸出電感dc電阻,Iout為轉(zhuǎn)換器3.3V時(shí)的輸出電流。
當(dāng)電池電壓降至Vbattery_min時(shí),系統(tǒng)在低于最小容限時(shí)必須關(guān)閉,以避免運(yùn)行在3.3V電壓軌上而損壞數(shù)據(jù)。即使電池仍剩余5~15%電能,系統(tǒng)也有可能關(guān)閉。系統(tǒng)關(guān)閉前還剩余多少電池電能多少取決于元件電阻、負(fù)載電流、電池的新舊以及環(huán)境溫度等多種因素。
大多數(shù)設(shè)計(jì)工程師會(huì)因?yàn)檫@個(gè)原因而放棄采用單獨(dú)的降壓選擇。
低壓降穩(wěn)壓器解決方案
另一種不常用的解決方案是LDO,與“單獨(dú)的降壓”方案類似,LDO無法完全利用全部電池電量,原因是只有當(dāng)輸入電壓大于輸出電壓與LDO壓降之和時(shí),才能起到穩(wěn)壓作用。如果LDO的壓降為0.15V,則當(dāng)電池電壓低于3.3V+0.15V=3.45V時(shí),3.3V輸出電壓開始下降。由于采用這個(gè)解決方案而無法充分利用的電池電能,有可能比單獨(dú)的壓降解決方案多得多。盡管有這樣的缺點(diǎn),但LDO在一定的環(huán)境下也有優(yōu)勢。
通常情況下LDO解決方案的尺寸最小,因此當(dāng)主系統(tǒng)對(duì)空間有嚴(yán)格要求時(shí),它是一種理想選擇。LDO解決方案的成本通常也是最低的,因此非常適用于低成本應(yīng)用。眾多設(shè)計(jì)工程師因LDO低效而放棄采用該方案,但是仔細(xì)研究后可以發(fā)現(xiàn),該應(yīng)用中的效率還是不錯(cuò)的:
當(dāng)充滿電的鋰離子電池的起始電壓為4.2V時(shí),LDO的初始效率為78%,且其效率隨電池電壓的降低而上升。
評(píng)論