基于人眼微動(dòng)機(jī)理的紅外圖像邊緣提取
圖像邊緣是圖像不同屬性區(qū)域之間交接的地方,是區(qū)域?qū)傩园l(fā)生突變的地方。圖像的邊緣包含了圖像大部分的信息,是圖像識(shí)別和分類的重要依據(jù),也是圖像處理研究的重要內(nèi)容。各國學(xué)者提出了許多圖像邊緣提取算法,如經(jīng)典的Sobel、Prewitt、LOG、Canny等算法[1]。這些算法原理簡單易于實(shí)現(xiàn),但是由于它們大多都是基于局部窗口的微分梯度算子,對(duì)噪聲敏感,因此不適合處理受噪聲干擾嚴(yán)重的圖像。隨著計(jì)算機(jī)技術(shù)的發(fā)展以及其他學(xué)科理論在圖像處理中的應(yīng)用,學(xué)者們提出了許多基于新理論的邊緣提取算法,如基于形態(tài)學(xué)、模糊數(shù)學(xué)、小波變換、分形學(xué)的邊緣提取算法等[2-4]。各種算法各有特色,同時(shí)都有一定的適用范圍?;诩t外成像機(jī)理的特殊性,紅外圖像普遍存在著對(duì)比度低、邊緣模糊,圖像信噪比低等特點(diǎn),紅外圖像邊緣提取難度較大。由于人眼微動(dòng)具有超分辨率的特性,對(duì)紅外圖像處理提供了良好的啟示。本文就是根據(jù)人眼微動(dòng)機(jī)理研究紅外圖像邊緣的提取,并通過實(shí)驗(yàn)加以驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,基于人眼微動(dòng)機(jī)理的紅外圖像邊緣提取算法不但能夠精確提取圖像的邊緣,同時(shí)能夠很好地減少圖像中的偽邊緣,具有良好的邊緣提取效果。
1 人眼微動(dòng)成像原理
早在1952年,DITCHBURN和GINSBORG等人就注意到人眼在固視狀態(tài)下具有無意識(shí)的微小運(yùn)動(dòng),即人眼微動(dòng)[5,6],它分為三種模式:高頻振顫、飄移運(yùn)動(dòng)和閃動(dòng)。由于前兩種幅度不大,同時(shí)目前的眼球檢測(cè)技術(shù)難以精確地測(cè)量,因此這里提到的人眼微動(dòng)主要指閃動(dòng)。國外學(xué)者對(duì)眼球微動(dòng)進(jìn)行了大量的實(shí)驗(yàn)研究。實(shí)驗(yàn)表明,人眼在停止眼球所有運(yùn)動(dòng)的時(shí)候,靜止的圖像將突然變模糊繼而消失,眼球微動(dòng)與視覺的產(chǎn)生存在直接的關(guān)系,且雙目微動(dòng)優(yōu)于單目微動(dòng)。近年來,CONDE M等[7]學(xué)者通過測(cè)量圖像消失或再現(xiàn)前后微動(dòng)發(fā)生的概率、速率以及振幅的變化,進(jìn)一步揭示了眼球微動(dòng)與圖像消失有著直接關(guān)系,微動(dòng)與固視圖像的清晰度有因果聯(lián)系。
人眼微動(dòng)的成像原理[8,9]為:人眼微動(dòng)使感興趣信息更準(zhǔn)確地落入視網(wǎng)膜的中央凹區(qū),信息越精確地落于中央凹區(qū),人眼所感受到的圖像銳化程度越強(qiáng);人眼微動(dòng)會(huì)使近凹區(qū)反應(yīng)增強(qiáng),它們通過橫向連接具有抑制作用的神經(jīng)網(wǎng)絡(luò)對(duì)中央凹區(qū)的信息進(jìn)行修正,如一次修正不夠理想,人眼微動(dòng)會(huì)使信息重新更精確地回到中央凹區(qū),同時(shí)隨著信息尺度的大小調(diào)整微動(dòng)幅度,如此反復(fù)直到精確地辨識(shí)出信息為止。信息尺度越小,微動(dòng)幅度就越小,反之亦然。同時(shí)隨著微動(dòng)速率的提高,對(duì)應(yīng)視網(wǎng)膜上感受視野的銳化能力就會(huì)越強(qiáng)。本文通過對(duì)圖像進(jìn)行平移來近似模擬人眼這種微動(dòng)機(jī)制,并將其應(yīng)用于紅外圖像的邊緣提取。
2 算法基本過程
2.1 算法基本原理
人眼主要依靠微動(dòng)機(jī)制來分辨圖像的邊緣,眼球微動(dòng)幅度越小,圖像的邊緣越細(xì)致,隨著幅度增大,圖像邊緣線條變粗,但是對(duì)大尺度邊緣突出能力強(qiáng)于小幅度的情形。人眼微動(dòng)理論具有強(qiáng)大的邊緣提取能力。算法的基本原理如圖1所示[10]。結(jié)合視網(wǎng)膜節(jié)細(xì)胞對(duì)方向的敏感性,首先選擇人眼微動(dòng)的方向,然后通過微動(dòng)圖像計(jì)算微動(dòng)方向的邊緣圖像,之后各個(gè)微動(dòng)方向邊緣圖像進(jìn)入競(jìng)爭環(huán)節(jié),競(jìng)爭的結(jié)果則為各個(gè)微動(dòng)方向最優(yōu)的整體灰度邊緣圖像,最后進(jìn)行二值化處理生成二值邊緣圖像。
設(shè)原始圖像為f(x,y),則在某一微動(dòng)方向上圖像的微動(dòng)邊緣圖像由下式表示:
g(x,y)={f(x,y)-f?茲(x+k1·?駐x,y+k2·?駐y)} (1)
式中,?駐x、?駐y分別表示圖像向x、y方向移動(dòng)的距離單元,k1、k2表示移動(dòng)的大小,?茲表示移動(dòng)的方向,計(jì)算公式為:
?茲=arctan(k2/k1) (2)
以r(x,y)表示競(jìng)爭網(wǎng)絡(luò)的輸出,則競(jìng)爭灰度邊緣圖像可表示為:
r(x,y)=max{gi(x,y)|?坌i} (3)
設(shè)定閾值t,得到二值化邊緣圖像:
R(x,y)=1 r(x,y)≥t0 r(x,y)t (4)
2.2 計(jì)算步驟
(1)輸入原始圖像A,通過對(duì)原始圖像A在微動(dòng)方向上平移,生成綜合微動(dòng)圖像F。F=[Ah,Av,Ad],其中h、v、d分別代表水平、垂直和傾斜方向。本文分別將圖像A向8個(gè)方向平移,移動(dòng)距離為一個(gè)像素單位。
評(píng)論