成功實現高性能數字無線電
調幅(AM)是20世紀前80年無線電廣播的主要形式,但通道衰落、失真和噪聲導致接收質量不佳。隨著調頻(FM)的引入,這些問題在一定程度上得到了緩解。FM還能提供立體聲傳輸和CD音質的音頻,但模擬無線電仍然無法完全消除通道缺陷效應和覆蓋區(qū)域有限等問題。2003年間,兩家新創(chuàng)商業(yè)公司XM和Sirius(后合并為SiriusXM™), 在美國推出了基于訂閱的大范圍數字衛(wèi)星無線電服務,其盈利模式與付費電視頻道類似。大約與此同時,WorldSpace Radio開始為亞洲和非洲提供衛(wèi)星廣播。
借助“衛(wèi)星數字音頻無線電服務”(SDARS),汽車收音機聽眾可以在衛(wèi)星覆蓋范圍內的任何地方收聽同一無線電臺,只有當衛(wèi)星信號被建筑物、樹葉和隧道等遮擋時才會臨時中斷。XM衛(wèi)星無線電帶頭通過安裝地面中繼器來克服遮擋問題,中繼器在稠密市區(qū)發(fā)射相同的衛(wèi)星音頻信號,構成一個衛(wèi)星與地面廣播結合的架構。
幾乎同時,傳統(tǒng) 地面廣播公司也繪制了數字廣播藍圖,原因有二。第一,他們認識到,他們在模擬道路上很快就要走到盡頭,因為全世界都在向更高質量的數字跑道遷移.第二,頻譜資源越來越稀少,要在相同帶寬內傳輸更多內容,只有通過數字化和壓縮新舊內容,打包后進行廣播。因此,全世界都已開始從模擬無線電轉向數字無線電。這些無線電廣播技術具有接收更清晰、覆蓋區(qū)域更廣的優(yōu)勢,能夠在可用模擬無線電通道的現有帶寬內傳輸更多內容和信息,而且用戶可以更靈活地控制要獲取和收聽的節(jié)目素材(圖1)。

圖1. 匯聚處理器上的數字無線電
數字無線電發(fā)展示例:印度
地面廣播有兩種開放標準——數字多媒體廣播(DMB)和通用數字無線電™ (DRM),以及一種專有標準HD Radio™(由iBiquity開發(fā),是唯一經過FCC批準用于美國AM/FM音頻廣播的標準),DMB指定了數字音頻廣播的多種格式,包括DAB、DAB+和T-DMB,采用VHF頻段III和L頻段。DRM采用DRM30,工作頻率范圍是150 kHz到30 MHz;DRM+則采用VHF頻段I、II和III。
VHF頻段的有用傳播基本上局限于很小地理區(qū)域內的視線范圍。而短波傳播則可在電離層中多次反射,從而到達世界上幾乎任何地方。對于人口密集且地理范圍較小的國家/地區(qū),采用VHF頻段III和L頻段傳輸DMB非常有效。對于面積廣袤的國家/地區(qū),中短波傳輸能夠實現有效的覆蓋。因此,在試用DAB和DRM幾年之后,印度政府決定采用DRM。
2007年間,印度國家廣播電臺(AIR)、亞太廣播聯盟(ABU)和DRM聯合體在新德里進行了DRM的第一次現場試驗。試驗為期三天,當時采用了三個發(fā)射器,并測量了各種參數。除了新德里的這些試驗以外,AIR還進行了長距離測量。結果表明,DRM憑借有限數量的發(fā)射器就能服務更多人口,優(yōu)勢明顯。此外,日益提高的節(jié)能要求將功耗考慮提高到極其重要的地位。DRM的電源效率高出50%,對于支持生態(tài)平衡和讓地球更環(huán)保而言至關重要。
數字無線電接收機和DSP
物理世界是模擬的, 但科學家和工程師們發(fā)現,在數字域中更容易進行大量計算和符號操作。采樣理論、信號處理技術和各種數據 轉換器的出現, 使工程師們得以輕松順利地利用模數轉換器(ADC)和帶可編程內核的數字信號處理器來設計、實現和測試復雜的數字信號處理(DSP)系統(tǒng)。
強大高效DSP的發(fā)展以及信息和通信理論的進步,促成了媒體技術與通信的融合。數字無線電的出現歸功于這些技術進步。
數字無線電接收機最初是作為實驗室原型而設計的,然后投入試生產。像大多數技術一樣,第一代產品一般是利用分立器件組裝而成。隨著市場規(guī)模和競爭水平的提高,制造商發(fā)現,通過降低成品價格可以進一步擴大市場。更高出貨量的前景吸引半導體制造商投入資金,努力集成更多分立器件以降低成本。隨著時間推移,不斷縮小的芯片尺寸導致成本進一步降低,同時產品功能愈加完善。許多產品都有過這樣的持續(xù)演進過程,包括FM收音機和手機。
數字無線電中的信號處理
典型的數字通信系統(tǒng)(圖2)先將模擬信號轉換為數字信號,再進行壓縮,并添加糾錯碼,然后將多個信號打包以最大限度地利用通道容量。要傳輸RF信號(它存在于“實際”的模擬能量世界),須將數字信號轉換為模擬信號并調制到載波頻率上。接收機端發(fā)生的過程剛好相反,首先是解調載波頻率。然后,將信號轉換為數字信號,檢查有無錯誤并解壓縮?;鶐б纛l信號轉換為模擬信號,最終產生聲音。

圖2. 數字無線電的軟件架構
數字無線電接收機中的信號處理算法可以分為以下幾類:
通道解碼
信源解碼
音頻后處理
中間件
用戶接口(MMI)
在數字無線電中, 通源編碼 和 通道編碼 分別可以映射到高效音頻編解碼器 和 錯誤控制系統(tǒng)組件。實際上,如果編解碼器采用容錯設計,則可以更好地執(zhí)行錯誤控制。
理想的通道編碼器應能從傳輸錯誤中恢復。理想的通源編碼器應能將消息壓縮到最高信息含量(香農熵),但如果輸入流包含錯誤,高度壓縮的消息將導致非常高的音頻失真。因此,高效的源編碼還應確保解碼器能夠檢測流中的錯誤并隱藏其影響,使得整體音質不降低。
DRM采用了通源編碼和通道編碼的相關技術創(chuàng)新,從而提供更好的音頻體驗。所選的DRM音頻通源編碼算法可確保:
高效的音頻編碼——以更低的比特率實現更高的音質
更好的容錯性—在存在傳輸錯誤時降低音頻質量以保證傳輸
高效音頻源編碼
活動圖像專家組(MPEG)技術可以說是學術界、工業(yè)界和技術論壇有效合作的渠道與框架。在音頻領域,這種合作結出了碩果,例如分別用于廣播和存儲/分發(fā)的MPEG Layer II、MP3和AAC(高級音頻編碼)等,鼓勵著工業(yè)界實施進一步的研發(fā)計劃。雖然MP3仍是網絡分發(fā)和存儲應用最受歡迎的“非官方”格式,但AAC的授權規(guī)范更簡單,外加蘋果公司決定采用AAC作為iPod的媒體格式,使得AAC更受業(yè)界關注。
評論