新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 解決軟硬件接口的嵌入式系統(tǒng)設計實例

解決軟硬件接口的嵌入式系統(tǒng)設計實例

作者: 時間:2011-11-03 來源:網(wǎng)絡 收藏
寄存器

本文引用地址:http://2s4d.com/article/150079.htm

既然硬件工程師的重點已經(jīng)從邏輯門和總線轉移到了,我們再來審視一下任何處理器中最常用到的寄存器設計。寄存器允許高速訪問資源,其訪問的效率對的性能有很大的影響。

寄存器的結構與訪問

設計工程師應該精心選擇硬件寄存器大小,使處理器能最有效地進行硬件訪問。一般來說,總是采用系統(tǒng)內部整數(shù)訪問方式。寄存器應該被譯碼為連續(xù)的組(沒有地址空檔),這樣可以加速指針或陣列索引對寄存器的訪問。任何可寫的寄存器也應該是以同樣的格式可讀,這樣可以避免使用本地存儲器來緩存這些寄存器值。

控制一個子系統(tǒng)的寄存器應該以相同的結構形式在一起分組,使軟件能使用通用的驅動程序對它們進行訪問。當設計中需要多個同一類型的子系統(tǒng)時這點尤其重要。

為了避免被編碼成獨立進程的軟件任務之間發(fā)生沖突,獨立的子系統(tǒng)不能在系統(tǒng)處理器訪問期間共享可寫寄存器。這些“獨立”的軟件進程在訪問共享寄存器時會產(chǎn)生競爭,除非在系統(tǒng)代碼中使用不可中斷的讀/寫驅動程序。根據(jù)操作系統(tǒng)的不同,多個進程共享寄存器甚至可能會產(chǎn)生功能調用的額外開銷。訪問共享寄存器的同時還有執(zhí)行其它進程的做法是錯誤的,也是軟件設計的通病,會導致間歇性的系統(tǒng)故障,影響集成和測試系統(tǒng)軟件的進度。

系統(tǒng)A違反了很多上文提到的原則,如采用只寫寄存器,共享控制和狀態(tài)寄存器,以及沒有為每個軸提供公共的寄存器映射。系統(tǒng)A必須用專門的驅動程序來緩沖寫輸出數(shù)據(jù),移位并屏蔽軸驅動與位置信息,并防止軸驅動寄存器內容被為每個軸任務編寫的代碼所影響。系統(tǒng)B由于分離并重組了與每個軸有關的寄存器,因此能克服這些問題。

寄存器復位內容

硬件設計工程師應仔細考慮系統(tǒng)的復位狀態(tài)。硬件設計通常采用啟動程序來取得系統(tǒng)啟動后的控制權,并將系統(tǒng)初始化到一個安全的狀態(tài)。系統(tǒng)復位后應將硬件置于一個確定的安全狀態(tài),并且硬件應持續(xù)保持安全狀態(tài)直到系統(tǒng)軟件初始化完成為止。代碼也應在軟件控制下復位硬件以幫助調試、自檢和原始代碼的開發(fā)。

系統(tǒng)A不控制驅動寄存器的復位內容,需要代碼的介入來將所有三個軸的驅動寄存器設置為零。這種結構會產(chǎn)生嚴重的系統(tǒng)設計問題,因為處理器通常是保持在復位狀態(tài),直到FPGA和ASIC加電并得到配置后處理器才正常工作。如果開發(fā)人員使用仿真器,那么在集成過程中系統(tǒng)A還會出現(xiàn)另外的問題:被仿真器控制的處理器在系統(tǒng)加電后可能需要很長的初始化時間才能正常工作。在軟件取得控制權之前系統(tǒng)A和B的軸都處于隨機驅動狀態(tài)。

系統(tǒng)B在加電后會將所有軸驅動寄存器設為零,它對軸驅動設置的控制并不依賴于啟動時間。因為系統(tǒng)B沒有隱藏的狀態(tài)機,因此在本設計中沒有必要考慮增加額外的軟件復位寄存器。

寄存器域設計

大多數(shù)資源所包含的數(shù)據(jù)項并不正好適合一個寄存器。這種情況下,硬件設計工程師必須將一個寄存器分成若干域。合理的域結構對系統(tǒng)性能來說非常重要,與寄存器設計有相似的影響。有效的域接口設計規(guī)則類似于寄存器設計規(guī)則,但設計工程師還需要特別注意域的順序與放置,還要對寄存器中未用到一些字節(jié)作一定的處理。

1. 寄存器的域

域被定義為寄存器中若干位的子集,主要用于報告或控制資源的一個功能要素。在硬件設計中最常用的域類型有:1. 布爾域:真或假,通常是一位;2. 多位狀態(tài)域和控制域:多位用于報告或控制內部相關功能;3. 列舉狀態(tài)域和控制域:多個位的集合,其中每個位代表了一種不同的硬件狀態(tài);4. 數(shù)字域:多個位組合在一起用來代表一定的數(shù)量值。

從軟件使用者角度看,最有效的域結構是每個寄存器只用一個域。這種理想的軟件結構可能導致硬件實現(xiàn)效率低,因此一個好的系統(tǒng)設計需要在設計之間作出折衷,在每個寄存器中應放置多個域。

下文將著重討論一個寄存器中假設存在多個域的情況,不過,當對資源的某個特殊參數(shù)進行的有效訪問將嚴重影響系統(tǒng)軟件性能時,硬件設計工程師仍應該考慮使用單個域的寄存器。

2. 域結構

前文提到的用于寄存器的結構概念同樣也適合于寄存器內部的域。一個寄存器應該只包含屬于設計中同一功能要素的域,并且該寄存器中的所有可寫域都應該是可讀的。

那些包含有屬于多個功能要素的域的寄存器同樣需要特殊驅動程序支持,這樣才能使多個進程安全地訪問每個域。而配置為“只寫”功能的域需要分配影子內存來保存寄存器域中的前一狀態(tài)值。硬件設計工程師原來設想的簡單的“屏蔽/寫”操作現(xiàn)在變成了繁雜的多步功能調用,首先必須禁止中斷和任務切換,然后讀本地存儲器,屏蔽輸入輸出值,再進行硬件寄存器寫,最后開放中斷和多任務切換。如果寄存器中所有域能得到有效安排,通過一個軟件任務就能訪問全部域的話,上述情況就能得到有效避免。

由于系統(tǒng)A將屬于不相關功能的多個域組合放在一個寄存器中,因此它需要使用特殊的驅動程序。而系統(tǒng)B則遵循“單個寄存器內的域按任務進行組織”的原則,將每個域放置在屬于自己的專用寄存器中,因此能高效地訪問資源中的每個軸參數(shù)。

3. 十六進制數(shù)字對齊

硬件設計工程師還應該明白針對處理器和軟件開發(fā)環(huán)境進行對齊約束。如果將域放置在錯誤的地址上而超出字的邊界,將迫使軟件設計工程師只能按塊訪問每個域,進而增加訪問復雜性,降低訪問的速度。在調試過程中,用零值填充域是非常有用的,可以使每個域的最低位對齊十六進制數(shù)字(4位)的邊界:當在邏輯分析儀、調試儀或仿真器上顯示寄存器情況時,十六進制數(shù)字對齊會有助于域值的可視化提取。系統(tǒng)A的寄存器域是沒有對齊的,因此從原始的十六進制數(shù)據(jù)中提取域值很困難。由于控制域沒有對齊,在查錯時屏蔽測試輸入也十分困難。而系統(tǒng)B的所有域都是按十六進制偶數(shù)數(shù)字對齊,因此通過寄存器讀可以很容易地確定每個域的狀態(tài),并且能方便地將某個域設為指定值。

4. 域位置的分配與順序

寄存器內域的設置也會嚴重影響軟件實現(xiàn)的效率。布爾域和多位域通常與位置無關,但當列舉域和數(shù)字域被放置在寄存器的最低位(LSB)時對它們的訪問效率通常是最高的(LSB的實際位數(shù)取決于處理器類型,位0不一定是LSB)。將域配置在寄存器的LSB中可以有效地消除對域內容屏蔽后的移位操作,也使測試設備或進行可視化檢查的調試儀訪問寄存器時能更容易地識別域值。

系統(tǒng)A中用于軸2和軸3的域值在使用前必須要求軟件進行屏蔽和移位。而系統(tǒng)B則將所有數(shù)字域配置在寄存器的LSB中,從而能完成更有效的訪問。系統(tǒng)B的集成性也更好,資源寄存器的十六進制數(shù)據(jù)能真正分離成正確的域值。

5. 未用數(shù)據(jù)位

寄存器中的未用位同樣也會影響軟件實現(xiàn)的效率。所有未用位應回歸為零,并且寫入操作時無需對它們作特殊的處理,這樣可以避免不必要的屏蔽與清除操作。這個規(guī)則的唯一一個例外是包含數(shù)字域為2的補碼的寄存器,并且在寄存器中剩余的最高位(MSB)沒有用的情況。在這種情況下,使硬件實現(xiàn)符號將域的MSB擴展到未用位就非常有用。以這種方式擴展的數(shù)字域能夠被處理器直接訪問,因為帶符號的數(shù)值無需軟件符號的擴展。當對特殊的數(shù)字域變量的訪問速度嚴重影響整體系統(tǒng)性能時,將該類型的域與“單個寄存器單個域”結合起來考慮將非常有用。由于無需屏蔽或符號擴展,這些域能以內部數(shù)據(jù)訪問的方式直接訪問。

當系統(tǒng)A中需要從寄存器提取域值時,要求軟件對每個數(shù)字域值進行符號擴展,而系統(tǒng)B允許通過對寄存器的內部整數(shù)訪問直接訪問域值。

6. 域類型選擇

域類型的正確選擇也能極大地提高軟件實現(xiàn)效率。在打開或關閉獨立資源功能時布爾域是最有效的。要注意的是,只有當寄存器是可讀寫時單位域才容易編碼。如果硬件寄存器對域的訪問有限制,就需要專門的緩沖器(有可能再加上一個專門的驅動程序)來保存當前的內容。限制性訪問同時也會限制一些編程構造的使用,如位域(bit field),從而影響系統(tǒng)代碼的可讀性,且無助于減少編程錯誤。

當表達資源狀態(tài)的數(shù)據(jù)需要占用一定范圍的值時數(shù)字域就很有用。當一個域能保持正值和負值使用時,帶符號的表達式通常需要更多的軟件工作。另外,還要避免在數(shù)字域中對其它數(shù)據(jù)進行編碼(如利用域符號表示一個不相關的資源狀態(tài))。

從硬件實現(xiàn)來看,多位域更有效,但在寫入系統(tǒng)代碼時會增加代碼的復雜度。列舉類型通常能更好地反映資源中相關功能的實際可用性,可以有效防止沖突功能的采用(如將存儲器塊切換到本地總線上)。列舉類型還應提供這樣的可選項:無條件允許切換之間存在“停放帶”,無條件允許系統(tǒng)軟件中存在“先中斷再實現(xiàn)”的代碼切換。

系統(tǒng)A中對軸驅動域的“只寫”訪問使軟件對目標域的訪問效率很低,必須用RAM保存寫過程中不作修改的過去的軸內容。系統(tǒng)B中由于每個寄存器都只有一個域并允許讀寫操作,因此不存在這樣的問題。

linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)


評論


相關推薦

技術專區(qū)

關閉