博客專欄

EEPW首頁 > 博客 > 目標(biāo)檢測 | 基于統(tǒng)計自適應(yīng)線性回歸的目標(biāo)尺寸預(yù)測

目標(biāo)檢測 | 基于統(tǒng)計自適應(yīng)線性回歸的目標(biāo)尺寸預(yù)測

發(fā)布人:CV研究院 時間:2022-11-20 來源:工程師 發(fā)布文章
一、簡要

今天分享的是研究者提出了基于統(tǒng)計自適應(yīng)線性回歸的目標(biāo)尺寸預(yù)測方法。YOLOv2和YOLOv3是典型的基于深度學(xué)習(xí)的對象檢測算法,它們使用統(tǒng)計自適應(yīng)指數(shù)回歸模型設(shè)計了網(wǎng)絡(luò)的最后一層來預(yù)測對象的尺寸大小。

圖片

然而,由于指數(shù)函數(shù)的性質(zhì),指數(shù)回歸模型可以將損失函數(shù)的導(dǎo)數(shù)傳播到網(wǎng)絡(luò)中的所有參數(shù)中。研究者提出了統(tǒng)計自適應(yīng)線性回歸層來緩解指數(shù)回歸模型的梯度爆炸問題。所提出的統(tǒng)計自適應(yīng)線性回歸模型用于網(wǎng)絡(luò)的最后一層來預(yù)測從訓(xùn)練數(shù)據(jù)集的統(tǒng)計數(shù)據(jù)估計目標(biāo)的尺寸大小。研究者新設(shè)計了基于YOLOv3tiny網(wǎng)絡(luò),它在UFPR-ALPR數(shù)據(jù)集上比YOLOv3有更高的性能。

二、背景主要這個上韓文論文,導(dǎo)致本人閱讀過程比較艱難,所以今天就簡單介紹些整體框架思想,有興趣的同學(xué)可以進一步閱讀論文,深入了解!

圖片

今天我們就不介紹傳統(tǒng)的檢測網(wǎng)絡(luò)了,因為我們”計算機視覺研究院“之前分享了太多的目標(biāo)檢測類干貨及實踐,想入門級進一步熟知請查看歷史分享。部分分享見下鏈接:

 往期推薦 

*博客內(nèi)容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點,如有侵權(quán)請聯(lián)系工作人員刪除。



關(guān)鍵詞: AI

相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉