基于DSP的高速PCB抗干擾設(shè)計(jì)
隨著DSP(數(shù)字信號(hào)處理器)的廣泛應(yīng)用,基于DSP的高速信號(hào)處理PCB板的設(shè)計(jì)顯得尤為重要。在一個(gè)DSP系統(tǒng)中,DSP微處理器的工作頻率可高達(dá)數(shù)百M(fèi)Hz,其復(fù)位線、中斷線和控制線、集成電路開關(guān)、高精度A/D轉(zhuǎn)換電路,以及含有微弱模擬信號(hào)的電路都非常容易受到干擾;所以設(shè)計(jì)開發(fā)一個(gè)穩(wěn)定的、可靠的DSP系統(tǒng),抗干擾設(shè)計(jì)非常重要。
干擾即干擾能量使接收器處在不希望的狀態(tài)。干擾的產(chǎn)生分兩種:直接的(通過導(dǎo)體、公共阻抗耦合等)和間接的(通過串?dāng)_或輻射耦合)。很多電器發(fā)射源,如光照、電機(jī)和日光燈都可以引起干擾,而電磁干擾EMI能產(chǎn)生影響有3個(gè)必需的途徑,即干擾源、傳播途徑和干擾受體,只需要切斷其中的一個(gè)就可以解決電磁干擾問題。
1 DSP系統(tǒng)的干擾產(chǎn)生分析
為了做出一個(gè)穩(wěn)定可靠的DSP系統(tǒng),必須從各個(gè)方面來消除干擾,即使不能完全消除,也要盡量減少到最小。對(duì)于DSP系統(tǒng)而言,主要干擾來自于以下幾個(gè)方面:
①輸入輸出通道干擾。指干擾通過前向通道和后向通道進(jìn)入系統(tǒng),如DSP系統(tǒng)的數(shù)據(jù)采集環(huán)節(jié),干擾通過傳感器迭加到信號(hào)上,使數(shù)據(jù)采集的誤差增大。在輸出
②電源系統(tǒng)的干擾。整個(gè)DSP系統(tǒng)的主要干擾源。電源在向系統(tǒng)提供電能的同時(shí)也將其噪聲加到供電的電源上,必須在電源芯片電路設(shè)計(jì)時(shí)對(duì)電源線進(jìn)行退耦。
③空間輻射耦合干擾。經(jīng)過輻射的耦合通常稱為串?dāng)_。串?dāng)_發(fā)生在電流流經(jīng)導(dǎo)線時(shí)產(chǎn)生的電磁場(chǎng),而電磁場(chǎng)在鄰近的導(dǎo)線中感應(yīng)瞬態(tài)電流,造成臨近的信號(hào)失真,甚至錯(cuò)誤。串?dāng)_的強(qiáng)度取決于器件、導(dǎo)線的幾何尺寸及相隔距離。在DSP布線時(shí),信號(hào)線間距越大,距離地線越近,就越可以有效地減小串?dāng)_。
2 針對(duì)產(chǎn)生干擾的原因設(shè)計(jì)PCB
下面給出如何在DSP系統(tǒng)的PCB制作過程中減小各種干擾的方法。
2.1 多層板的層疊式設(shè)計(jì)
DSP高速數(shù)字電路中,為了提高信號(hào)質(zhì)量,降低布線難度,增加系統(tǒng)的EMC,一般采用多層板的層疊式設(shè)計(jì)。層疊式設(shè)計(jì)可以提供最短的回流路徑,減小耦合面積,抑制差模干擾。在層疊式設(shè)計(jì)中,分配專門的電源層和地層,并且地層和電源層緊耦合對(duì)抑制共模干擾有好處(利用相鄰的平面降低電源平面交流阻抗)。以圖1所示的4層板為例來說明層疊式的設(shè)計(jì)方案。
采用這種4層PCB設(shè)計(jì)的結(jié)構(gòu)有很多優(yōu)點(diǎn)。在頂層(top層)下面有一層電源層,元器件的電源引腳可以直接接到電源,不用穿過地平面。關(guān)鍵的信號(hào)選布在底層(bottorn層),使重要的信號(hào)走線空間更大,器件盡量放在同一層面上。若沒有必要,不要做2層零件的板子,這樣會(huì)增加裝配時(shí)間和裝配復(fù)雜度。如top層,只有當(dāng)top層組件過密時(shí),才將高度有限并且發(fā)熱量小的器件,像退耦電容(貼片)放在bottom層。對(duì)于DSP系統(tǒng)可能有大量的線要布,采用層疊式設(shè)計(jì),可以在內(nèi)層走線。如果按照傳統(tǒng)的通孔會(huì)浪費(fèi)很多寶貴的走線空間,可以利用盲埋孔(blind/buried via)來增加走線面積。
2.2 布局設(shè)計(jì)
為了使DSP系統(tǒng)獲得最佳性能,元器件的布局是非常重要的。首先放置DSP、Flash、SRAM和CPLD器件,這耍慎重考慮走線空間,然后按功能獨(dú)立原則放置其他IC,最后考慮I/O口的放置。結(jié)合以上布局再考慮PCB的尺寸:若尺寸過大,會(huì)使印制線條太長(zhǎng),阻抗增加,抗噪聲能力下降,制板費(fèi)用也會(huì)增加;如果PCB太小,則散熱不好,而且空間有限,鄰近的線條容易受到干擾。所以要根據(jù)實(shí)際需要選擇器件,結(jié)合走線空間,大體上算出PCB的大小。在對(duì)DSP系統(tǒng)布局時(shí),以下器件的擺放位置要特別注意。
(1) 高速信號(hào)布局
在整個(gè)DSP系統(tǒng)中,DSP與Flash、SRAM之間是主要的高速數(shù)字信號(hào)線,所以器件之間的距離要盡量近,其連線盡可能短,并且直接連接。因此,為了減小傳輸線對(duì)信號(hào)質(zhì)量的影響,高速信號(hào)走線應(yīng)盡量短。還要考慮到很多速度達(dá)到幾百M(fèi)Hz的DSP芯片,需要做蛇型繞線(delay tune)。這在下面布線中將重點(diǎn)闡述。
(2) 數(shù)模器件布局
在DSP系統(tǒng)中大多不是單一的功能電路,大量應(yīng)用了CM0S的數(shù)字器件和數(shù)字模擬混合器件,所以要將數(shù)/模分開布局。模擬信號(hào)器件盡量集中,使模擬地能夠在整個(gè)數(shù)字地中間畫出一個(gè)獨(dú)立的屬于模擬信號(hào)的區(qū)域,避免數(shù)字信號(hào)對(duì)模擬信號(hào)的干擾。對(duì)于一些數(shù)?;旌掀骷?,如D/A轉(zhuǎn)換器,傳統(tǒng)上將其看作模擬器件,把它放在模擬地上,并且給其提供一個(gè)數(shù)字回路,讓數(shù)字噪聲反饋回信號(hào)源,減小數(shù)字噪聲對(duì)模擬地的影響。
(3) 時(shí)鐘的布局
對(duì)于時(shí)鐘、片選和總線信號(hào),應(yīng)盡量遠(yuǎn)離I/O線和接插件。DSP系統(tǒng)的時(shí)鐘輸入,很容易受到干擾,對(duì)它的處理非常關(guān)鍵。要始終保證時(shí)鐘產(chǎn)生器盡量靠近DSP芯片,使時(shí)鐘線盡量短。時(shí)鐘晶體振蕩器的外殼最好接地。
(4)退耦布局
為了減小集成電路芯片電源上的電壓瞬時(shí)過沖,對(duì)集成電路芯片加退耦電容,這樣可以有效地去除電源上毛刺的影響,并減少在PCB上的電源環(huán)路反射。加退耦電容可以旁路掉集成電路器件的高頻噪聲,還可以作為儲(chǔ)能電容,提供和吸收集成電路開關(guān)門瞬間的充放電能。
在DSP系統(tǒng)中,對(duì)各個(gè)集成電路安放退耦電容,像DSP、SRAM、Flash等,在芯片的每個(gè)電源和地之間添加,而且要特別注意,退耦電容要盡量靠近電源提供端(source)和IC的零件腳(pin)。保證從電源提供端(sotlrce端)和進(jìn)入IC的電流的純凈,并且盡量能讓噪音的路徑縮短。如圖2所示,處理電容時(shí),使用大的過孔或多個(gè)過孔,且過孔到電容間的連線應(yīng)盡量短、粗。2個(gè)過孔距離遠(yuǎn)時(shí),因?yàn)槁窂教?,不好;最好的就是退耦電容?個(gè)過孔越近越好,可以使噪聲以最短路徑到地。
另外在電源輸入端或電池供電的地方加上高頻電容是非常有利的。一般情
(5) 電源的布局
在進(jìn)行DSP系統(tǒng)開發(fā)時(shí),電源需要慎重考慮。因?yàn)橐恍╇娫葱酒l(fā)熱量很大,應(yīng)優(yōu)先安排在利于散熱的位置,要與其他元器件隔開一定距離??梢岳眉由崞蛟谄骷旅驿併~來進(jìn)行散熱處理。注意在開發(fā)板底層不要放置發(fā)熱組件。
(6) 其他注意
對(duì)于DSP系統(tǒng)其他組件的布局應(yīng)該盡量考慮到焊接方便、調(diào)試方便和美觀等要求。如對(duì)電位器、可調(diào)電感線圈、可變電容器、撥碼開關(guān)等可調(diào)器件要結(jié)合整體結(jié)構(gòu)放置。對(duì)于超過15 g的器件要加固定支架再焊接,特別注意要留出PCB的定位孔及固定支架所占用的位置。PCB邊緣的元器件離PCB板邊距離一般不要小于2 mm,PCB最好為矩形,長(zhǎng)寬比為3:2或4;3。
2.3布線設(shè)計(jì)
在綜合考慮到增加DSP系統(tǒng)抗干擾性,增強(qiáng)EMC能力進(jìn)行布局后,布線也要有一些措施和技巧。
(1) DSP的布線
布線大體上是從核心器件開始,并以其為中心展開。對(duì)于DSP這種PQFP(Plastic Quad FIat Pack)或BGA(BaIl Grid Arrayr)封裝的器件,如圖3所示,應(yīng)先根據(jù)SRAM、Flash和CPLD的布局位置大體判斷出走線方向,對(duì)引腳進(jìn)行扇出(fanout)操作。特別是對(duì)于QFP&BGA類型的器件,扇出就顯得尤其重要。在布線開始之初,就先把BGA類型器件的引腳作扇出,可以為后面的布線節(jié)省時(shí)間,并可以提高布線的質(zhì)量和效率。在布線時(shí),合理利用EDA工具的特點(diǎn),比如power PCB的dynamicc rou-ting,可以最優(yōu)計(jì)劃空間。用dynamic的時(shí)候,這個(gè)功能會(huì)自動(dòng)讓線與線之間的空間保持在規(guī)則里面,不浪費(fèi)空間,減少后續(xù)修改,提高布線的質(zhì)量和效率。
對(duì)于高速DSP還要注意串?dāng)_及蛇行(delay tune)走線處理。蛇行走線處理,如圖4所示,可以保證信號(hào)的完整性,還要保證高速信號(hào)參考平面的連續(xù)性。在需要作平面分割的時(shí)候,一定注意不要讓高速線跨不連續(xù)的平面;非要跨,就加跨平面的電容,如圖5所示。
當(dāng)信號(hào)線(trace)間隔3倍信號(hào)線寬時(shí),信號(hào)間相互串?dāng)_(coupling)的幾率只有25%左右,這樣就可以達(dá)到抗電磁干擾(EMI)的要求。所以,像CLK和SRAM這些高速信號(hào)線,切記與它旁邊的信號(hào)線遠(yuǎn)離3倍寬以上,調(diào)等長(zhǎng)時(shí),即蛇型走線,線與線的寬度也要3倍信號(hào)線寬以上,包括對(duì)于其本身的信號(hào)線也要3倍信號(hào)線寬。如圖6所示,線寬5 mil*,繞線本身內(nèi)部的距離是15mil,大于等于3倍的線寬。
(2) 時(shí)鐘的布線
對(duì)于時(shí)鐘信號(hào),要使其對(duì)于其他信號(hào)的走線距離盡量大,保證在4倍線寬以上的距離,并且在時(shí)鐘(零件)的下面不要走線;對(duì)于模擬電壓輸入線,參考電壓端和I/0信號(hào)線盡量遠(yuǎn)離時(shí)鐘。
(3) 對(duì)系統(tǒng)電源的處理
電源是系統(tǒng)中最重要的部分。在PCB的層疊設(shè)計(jì)中分配了單獨(dú)的電源層,但由于一個(gè)DSP系統(tǒng)有多種數(shù)字和模擬器件,這樣所用到的電源也有多種,所以對(duì)電源層進(jìn)行了分割,使相同電源特性的器件分割在同一區(qū)域內(nèi),可就近連接到電源層。但要特別注意,進(jìn)行分割的時(shí)候要注意使參考電源平面的信號(hào)連續(xù)。經(jīng)過實(shí)驗(yàn)證明,40 mil的線寬,可以通過的電流能保證有l(wèi) A;對(duì)于過孑L,鉆徑為16 mil的可以通過1 A的電流,所以對(duì)于DSP系統(tǒng),電源線大于20 mil即可。對(duì)于電源線上的電磁輻射防護(hù)要注意以下幾點(diǎn):
◆用旁路電容限制電路板上交流電流的泄漏;
◆在電源線上串接共模扼流圈(common modechoke),以抑制流經(jīng)線中的共模電流;
◆布線靠近,減小磁輻射面積。
(4) 對(duì)接地的處理
在所有的EMC問題中,主要問題都是不適當(dāng)?shù)慕拥囟鸬?。地線處理的好壞直接影響系統(tǒng)的穩(wěn)定可靠。接地有以下作用:
◇降低輸出線上的共模電壓VCM;
◇減小對(duì)靜電(ESD)的敏感;
◇減小電磁輻射。
高頻數(shù)字電路和低頻模擬電路的地回路絕對(duì)不能混合,必須將數(shù)/模地分開,因?yàn)閿?shù)字電路高低電位切換時(shí)會(huì)在電源和地產(chǎn)生噪聲;若地平面不分開,模擬信號(hào)依然會(huì)被地噪聲干擾。所以對(duì)高頻信號(hào)應(yīng)采用多點(diǎn)串聯(lián)接地,盡量加粗縮短地線,這樣除減小壓降外,更重要的是降低耦合噪聲。但對(duì)于一個(gè)系統(tǒng)而言,無論怎樣分,最終的大地只有一個(gè),只是瀉放途徑不同而已,所以最后通過磁珠或0 n電阻,將數(shù)字地和模擬地連在一起來消除混合信號(hào)的干擾。
地平面分割時(shí),必須保證參考平面的連續(xù)性。像數(shù)/模共存的PCB板,若模擬信號(hào)線走的距離比較遠(yuǎn),應(yīng)盡量使其參考回流路徑也是模擬地。這意味著在地層要沿模擬信號(hào)的路徑割一個(gè)模擬地,使其參考模
(5) 其他注意事項(xiàng)
①在布線時(shí),導(dǎo)線的拐角處一般不要走成90
評(píng)論