電力工業(yè)中高壓開關(guān)柜隔離觸頭溫度監(jiān)測(cè)研究
可以看出在開關(guān)柜觸頭接觸正常、溫度變化穩(wěn)定后各個(gè)觸頭的實(shí)際溫升值DTC 與對(duì)應(yīng)的傳感器溫升值DTS之間的比例關(guān)系都在1.43 附近,取其平均值作為試驗(yàn)結(jié)果,可建立觸頭的實(shí)際溫度與傳感器的測(cè)量溫度間的數(shù)學(xué)關(guān)系式為
TC="K"(TS-T)+T (3)
式中 K="1".43;TS為光纖光柵溫度傳感器測(cè)量的溫度值;T為高壓開關(guān)柜環(huán)境溫度。
3.4 系統(tǒng)的抗電磁干擾性分析
為
了檢驗(yàn)光纖光柵傳感系統(tǒng)的抗電磁干擾能力,在高壓開關(guān)柜滿負(fù)荷工作,并且傳感器測(cè)量趨于穩(wěn)定的情況下,通過對(duì)開關(guān)柜采用突然掉電的方式來檢測(cè)溫度測(cè)量結(jié)果與電磁場(chǎng)的關(guān)系[15-16],實(shí)現(xiàn)抗電磁干擾能力的實(shí)驗(yàn)。圖4 是在觸頭溫升趨于穩(wěn)定后,在試驗(yàn)過程中安排了兩次停電并在一次側(cè)的B 相觸頭上測(cè)量的溫度數(shù)據(jù),圖4(a)是電流的變化過程圖,圖4(b)是電流變化引起的觸頭溫度變化曲線??梢娫谀妇€失去電流的情況下,引起了觸頭溫度的下降,但在恢復(fù)送電后又很快開始上升。從曲線可以看出測(cè)量的觸頭溫度對(duì)突然的停電與送電做出了反應(yīng),但這種溫度的升降是漸變的而不是突變的,說明電磁場(chǎng)的存在對(duì)傳輸光纖以及光纖光柵溫度傳感器沒有影響。如果電磁場(chǎng)的存在使測(cè)溫系統(tǒng)顯示的溫度較實(shí)際溫度偏高或偏低,那么當(dāng)開關(guān)柜母線中一旦失去電流,電磁場(chǎng)消失時(shí),溫度顯示會(huì)立即跳變到“實(shí)際值”,但這種跳變現(xiàn)象在實(shí)際試驗(yàn)中并未發(fā)生。因此說明光纖光柵觸頭測(cè)溫系統(tǒng)具有很強(qiáng)的抗電磁干擾能力。
4 實(shí)驗(yàn)結(jié)果
本光纖光柵觸頭溫度測(cè)量系統(tǒng)在變電站10kV高壓開關(guān)柜上進(jìn)行了成功試用,圖5 是在高壓開關(guān)柜工作在70%的額定負(fù)荷范圍時(shí)對(duì)一次側(cè)B相觸頭在24 小時(shí)的溫度監(jiān)測(cè)記錄,它反應(yīng)了全天觸頭溫度的變化過程。從圖中可以看出,從午夜0點(diǎn)到早晨6 點(diǎn)之間觸頭的溫度最低,這一方面是由于用電負(fù)荷較小,另一方面與氣溫較低有關(guān);從早晨6 點(diǎn)開始隨著用電負(fù)荷的增大,觸頭的溫度也開始升高,到9點(diǎn)用電負(fù)荷趨于穩(wěn)定,但由于氣溫的逐漸升高觸頭溫度也開始上升,到14 點(diǎn)時(shí)溫度達(dá)到最高;從14點(diǎn)到18點(diǎn)之間由于氣溫的降低,觸頭的溫度也逐漸變小;同時(shí)從18 點(diǎn)后,由于用電負(fù)荷的增大,觸頭溫度又開始上升,到22 點(diǎn)時(shí)達(dá)到最高;此后隨著用電負(fù)荷的減小,觸頭溫度也逐漸降低。通過對(duì)24小時(shí)觸頭溫度的記錄分析可以看出,光纖光柵觸頭溫度測(cè)量系統(tǒng)能夠正常工作,其記錄數(shù)據(jù)正確反應(yīng)了觸頭溫度與開關(guān)柜的工作負(fù)荷和周圍空氣溫度之間的變化關(guān)系,說明了光纖光柵觸頭溫度測(cè)量系統(tǒng)的方案是可行的。
5 結(jié)論
本文利用光纖光柵傳感器的體積小、抗電磁干擾能力強(qiáng)、絕緣性好等優(yōu)點(diǎn),代替電子類傳感器實(shí)現(xiàn)了對(duì)高壓開關(guān)柜隔離觸頭的溫度監(jiān)測(cè),此方案不需要復(fù)雜的絕緣設(shè)計(jì),因此具有簡(jiǎn)單、可靠的優(yōu)點(diǎn)。此方案中,解決了光纖光柵溫度傳感器的應(yīng)變交叉敏感影響,在光路的復(fù)用上采用了空分復(fù)用加波分復(fù)用的方案,提高了系統(tǒng)的可靠性和實(shí)時(shí)性。此系統(tǒng)在10kV 高壓開關(guān)柜上進(jìn)行了測(cè)試,系統(tǒng)能夠正常運(yùn)行,說明本方案是可行的。
評(píng)論