TDD-LTE測試介紹及R&S解決方案
目前,在3G之后,各種通信技術(shù)將如何演進(jìn)是業(yè)界非常關(guān)注的一個焦點(diǎn),特別是對于TD-SCDMA來說,能否實(shí)現(xiàn)向下一代通信技術(shù)的平滑演進(jìn),決定了TD究竟具有多長時間的生命力,以及我國的自主創(chuàng)新戰(zhàn)略究竟能走多遠(yuǎn)。2007年11月,3GPPRAN151會議通過了27家公司聯(lián)署的LTETDD融合幀結(jié)構(gòu)的建議,統(tǒng)一了LTE TDD的兩種幀結(jié)構(gòu)。融合后的LTE TDD幀結(jié)構(gòu)是以TD-SCDMA的幀結(jié)構(gòu)為基礎(chǔ)的,這就為TD-SCDMA成功演進(jìn)到LTE乃至4G標(biāo)準(zhǔn)奠定了基礎(chǔ)。
TDD-LTE技術(shù)特點(diǎn)
LTE系統(tǒng)支持FDD和TDD兩種雙工方式。在這兩種雙工方式下,系統(tǒng)的大部分設(shè)計,尤其是高層協(xié)議方面是一致的。另一方面,在系統(tǒng)底層設(shè)計,尤其是物理層的設(shè)計上,由于FDD和TDD兩種雙工方式在物理特性上所固有的不同,LTE系統(tǒng)為TDD的工作方式進(jìn)行了一系列專門的設(shè)計,這些設(shè)計在一定程度上參考和繼承了TD-SCDMA的設(shè)計思想,下面我們對這些設(shè)計進(jìn)行簡要的描述與討論。
無線幀結(jié)構(gòu)
因?yàn)門DD采用時間來區(qū)分上、下行,資源在時間上是不連續(xù)的,需要保護(hù)時間間隔來避免上下行之間的收發(fā)干擾,所以LTE分別為FDD和TDD設(shè)計了各自的幀結(jié)構(gòu),即Type1和Type2,其中Type1用于FDD,而Type2用于TDD。
在FDD Type1中,10ms的無線幀分為10個長度為1ms的子幀,每個子幀由兩個長度為0.5ms的slot組成。 在TDD Type2中,10ms的無線幀由兩個長度為5ms的半幀組成,每個半幀由5個長度為1ms的子幀組成,其中有4個普通的子幀和1個特殊子幀。普通子幀由兩個0.5ms的slot組成,特殊子幀由3個特殊時隙(UpPTS,GP和DwPTS)組成。
上下行的時間分配
TDD另外一個顯著區(qū)別于FDD的物理特征是,F(xiàn)DD依靠頻率區(qū)分上下行,因此其單方向的資源在時間上是連續(xù)的;而TDD依靠時間來區(qū)分上下行,所以其單方向的資源在時間上是不連續(xù)的,時間資源在兩個方向上進(jìn)行了分配。
下圖是LTE TDD中支持的7種不同的上、下行時間配比,從將大部分資源分配給下行的“9:1”到上行占用資源較多的“2:3”,在實(shí)際使用時,網(wǎng)絡(luò)可以根據(jù)業(yè)務(wù)量的特性靈活的選擇配置。這樣,在資源組成上TDD與FDD所固有的不同,成為了LTE中另一部分為TDD所進(jìn)行的專門設(shè)計的原因。這一部分設(shè)計主要包括“物理層HARQ的相關(guān)機(jī)制”,以及“采用頻分的隨機(jī)接入信道”。
允許同一時間上存在多個隨機(jī)接入信道(頻分)是TDD上下行時分的結(jié)構(gòu)形成的又一設(shè)計結(jié)果。在LTEFDD的設(shè)計中,同一時刻只允許一個隨機(jī)接入信道的存在,即僅在時間域上改變隨機(jī)接入信道的數(shù)量。而在TDD中,時間資源已經(jīng)在上下行進(jìn)行了分配,同時由于不同的上下行配比的存在,可能存在上行子幀數(shù)目很少的情況(如DL:UL=9:1),因此在TDD中需要支持頻分的隨機(jī)接入信道,即在同一時間位置上采用不同頻率的區(qū)分提供多個隨機(jī)接入信道,以為系統(tǒng)提供足夠的隨機(jī)接入的容量。
在FDD的情況下,上、下行的資源在單方向上都是連續(xù)的,而且子幀數(shù)目相等。因此,以下行為例,在進(jìn)行物理層的HARQ時,下行數(shù)據(jù)與上行的ACK/NAK之間可以建立一對一的對應(yīng)關(guān)系。與此不同的是,在TDD的情況下,單方向的資源不是連續(xù)的,因此可能無法獲得對應(yīng)的時間上的資源。另外,上下行配比的設(shè)置可能使得上下行的子幀數(shù)目不相等,因此無法建立一一對應(yīng)的關(guān)系,所以這些都需要進(jìn)行針對性的設(shè)計。在LTETDD,為了解決以上問題,引入了MultipleACK/NAK的概念,即使用一個ACK/NAK完成對前續(xù)若干個下行數(shù)據(jù)的反饋,這樣就解決了上下行時隙不對稱帶來的反饋問題。在另一個方面,同時還減小了數(shù)據(jù)的傳輸時延,數(shù)據(jù)無需再等待到下一個上行時隙以進(jìn)行反饋了。當(dāng)然,該方案可能引起的不必要的過多重傳也需要引起注意。 同步信道
同步信道是另一項體現(xiàn)不同雙工方式的設(shè)計。LTE中用于小區(qū)搜索的同步信道包括“主同步信號”和“輔同步信號”。在兩種幀結(jié)構(gòu)中,同步信號具有不同的位置:在FDDType1中兩個同步信號連接在一起,位于子幀0和5的中間位置;而TDDType2中,輔同步信號位于子幀0的末尾,主同步信號位于特殊子幀,即DwPTS的第三個符號。在兩種幀結(jié)構(gòu)中,同步信號在無線幀中的絕對位置不相同,更為重要的是,主、輔同步信號的相對位置不同:在FDD中兩個信號連接在一起,而在TDD中兩個信號之間有兩個符號的時間間隔。由于同步信號是終端進(jìn)行小區(qū)搜索時最先檢測的信號,這樣不同的相對位置的設(shè)計使得終端在接入網(wǎng)絡(luò)的最開始階段就可以檢測出網(wǎng)絡(luò)的雙工方式,即FDD或者TDD。 隨機(jī)接入前導(dǎo)
隨機(jī)接入前導(dǎo)(Random Access preamble)的設(shè)計是LTE對TDD的另一項特殊設(shè)計。在LTE中,隨機(jī)接入序列采用如下圖所示的5種隨機(jī)接入序列格式。其中最后一種隨機(jī)接入序列格式是TDD所特有的,由于其長度明顯短于其它的4種格式,因此又稱為“短RACH”。采用短RACH的原因也是與TDD關(guān)于特殊時隙的設(shè)計相關(guān)的,如同圖中所描述的,短RACH在特殊時隙的最后部分(即UpPTS)進(jìn)行發(fā)送,這樣利用這一部分的資源完成上行隨機(jī)接入的操作,避免占用正常子幀的資源。采用短RACH時,需要注意的一個主要問題是其鏈路預(yù)算所能夠支持的覆蓋半徑,由于其長度要大大的小于其它格式的RACH序列,因此其鏈路預(yù)算相對較低,相應(yīng)的適用于覆蓋半徑較小的場景(根據(jù)網(wǎng)絡(luò)環(huán)境的不同,約700m~2km)。
評論