關(guān) 閉

新聞中心

EEPW首頁 > 安全與國防 > 設(shè)計應(yīng)用 > 一種低功耗有毒氣體探測器的設(shè)計

一種低功耗有毒氣體探測器的設(shè)計

作者: 時間:2012-03-24 來源:網(wǎng)絡(luò) 收藏
  安全第一!許多工業(yè)過程涉及到有毒化合物,例如:制造塑料、農(nóng)用化學(xué)品和醫(yī)藥產(chǎn)品會用到氯氣;生產(chǎn)半導(dǎo)體需要使用磷化氫和砷化氫;燃燒消費類包裝材料會釋放出氰化氫。因此,了解有毒氣體濃度是否達到危險程度十分重要。

  在美國,國家職業(yè)安全與健康研究所(NIOSH)和美國政府工業(yè)衛(wèi)生學(xué)家會議(ACGIH)已規(guī)定了許多有毒工業(yè)氣體的短時間和長時間接觸限值。“閾限值—時間加權(quán)平均值”(TLV-TWA)是指大多數(shù)工人可以在正常8小時工作日內(nèi)反復(fù)接觸而不會受到有害影響的時間加權(quán)平均濃度。“閾限值—短時間接觸限值”(TLV-STEL)是指大多數(shù)工人可以短時間接觸而不會受到刺激或傷害的濃度?!傲⒓赐{生命或健康的濃度”(IDLHC)是一種限制性濃度,它會對生命立即或緩慢產(chǎn)生威脅,導(dǎo)致不可逆轉(zhuǎn)的健康損害,或者影響工人獨立逃生的能力。表1列出了幾種常見氣體的限值。

低功耗有毒氣體探測器設(shè)計(電子工程專輯)

表1:某些常見工業(yè)有毒氣體的接觸限值

  對于檢測或測量有毒氣體濃度的儀器,電化學(xué)傳感器能夠提供多項優(yōu)勢。大多數(shù)傳感器都是針對特定氣體而設(shè)計,可用分辨率小于氣體濃度的百萬分之一(1 PPM),所需工作電流極小,非常適合便攜式電池供電的儀器。電化學(xué)傳感器的一個重要特性是響應(yīng)緩慢:首次上電后,傳感器可能需要數(shù)分鐘時間才能建立至最終輸出值;暴露于中間量程的氣體濃度時,傳感器可能需要25到40秒時間才能達到最終輸出值的90%。

  本文描述一種使用電化學(xué)傳感器的便攜式一氧化碳(CO)探測器。一氧化碳的IDLH濃度遠(yuǎn)高于大多數(shù)其它有毒氣體,處理起來相對更安全。但一氧化碳仍然屬于致命性氣體,測試本文所述電路時應(yīng)極其小心并采取適當(dāng)?shù)耐L(fēng)措施。

  圖1所示為Alphasense公司的CO-AX傳感器。表2是CO-AX傳感器技術(shù)規(guī)格摘要。

低功耗有毒氣體探測器設(shè)計(電子工程專輯)


圖1. CO-AX一氧化碳傳感器

低功耗有毒氣體探測器設(shè)計(電子工程專輯)

表2. CO-AX傳感器技術(shù)規(guī)格

  對于這種應(yīng)用中的便攜式儀表,實現(xiàn)最長的電池壽命是最重要的目標(biāo),因此,必須將功耗降到最低,這一點至關(guān)重要。在典型的低功耗系統(tǒng)中,測量電路上電后執(zhí)行一次測量,然后關(guān)斷進入長時間待機狀態(tài)。然而,在這種應(yīng)用中,由于電化學(xué)傳感器的時間常數(shù)很長,測量電路必須始終保持上電狀態(tài)。幸運的是,因為響應(yīng)緩慢,所以我們可以使用微功耗放大器、高值電阻和低頻濾波器,從而將約翰遜噪聲和1/f噪聲降至最低。此外,單電源供電可避免雙極性電源的功率浪費現(xiàn)象。

  圖2給出了該便攜式氣體探測器的電路。雙通道微功耗放大器 ADA4505-2在恒電位配置(U2-A)和跨導(dǎo)配置(U2-B)下使用。該放大器的功耗和輸入偏置電流非常低,對于恒電位部分和跨導(dǎo)部分都是很好的選擇。每個放大器的功耗僅10 μA,因此電池壽命非常長。

低功耗有毒氣體探測器設(shè)計(電子工程專輯)


圖2:使用電化學(xué)傳感器的便攜式氣體探測器

  在三電極電化學(xué)傳感器中,目標(biāo)氣體擴散到傳感器,通過一層薄膜后作用于工作電極(WE)。恒電位電路檢測參考電極(RE)的電壓,并向輔助電極(CE)提供電流,使RE端與WE端之間的電壓保持恒定。RE端沒有電流流進或流出,因此流出CE端的電流流進WE端,該電流與目標(biāo)氣體濃度成正比。流過WE端的電流可能是正值,也可能是負(fù)值,具體取決于傳感器中發(fā)生的是還原反應(yīng)還是氧化反應(yīng)。對于一氧化碳,發(fā)生氧化時,CE端電流為負(fù)值(電流流入恒電位運算放大器的輸出端)。電阻R4通常非常小,因此WE端的電壓約等于VREF.

  流入WE端的電流會導(dǎo)致U2-A的輸出端產(chǎn)生相對于WE端的負(fù)電壓。對于一氧化碳傳感器,此電壓通常為數(shù)百毫伏,但對于其它類型的傳感器,此電壓可能高達1 V。為采用單電源供電,微功耗基準(zhǔn)電壓源 ADR291(U1)將整個電路提升到地以上2.5 V。ADR291的功耗僅12 μA;它還能提供基準(zhǔn)電壓,以使模數(shù)轉(zhuǎn)換器可對此電路的輸出進行數(shù)字化處理。

跨導(dǎo)放大器的輸出電壓為:


  其中:

  IWE為流入WE端的電流。

  Rf為跨導(dǎo)電阻(在圖2中顯示為U4)。

  傳感器的最大響應(yīng)為90 nA/ppm,如表2所示,其最大輸入范圍為2,000 ppm。因此,最大輸出電流為180 μA,最大輸出電壓由跨導(dǎo)電阻決定,如公式2所示。

  針對不同氣體或來自不同制造商的傳感器具有不同的電流輸出范圍。如果U4使用可編程變阻器AD5271,而不是固定電阻,就可以針對不同的氣體傳感器采用相同的結(jié)構(gòu)和材料。此外,這樣的產(chǎn)品還支持調(diào)換傳感器,因為微控制器可以針對不同的氣體傳感器,將AD5271設(shè)置為適當(dāng)?shù)碾娮柚?。AD5271的溫度系數(shù)為5 ppm/°C,優(yōu)于大多數(shù)分立電阻;其電源電流為1 μA,對系統(tǒng)功耗的影響極小。

  采用5 V單電源供電時,根據(jù)公式1可知,跨導(dǎo)放大器U2-B的輸出范圍為2.5 V。如果將AD5271設(shè)置為12.5 kΩ,就可以利用傳感器最差靈敏度情況下的范圍,并能提供大約10%的超量程能力。

  使用65 nA/ppm的典型傳感器響應(yīng),可以通過下式將輸出電壓轉(zhuǎn)換為一氧化碳的ppm:


  采用差分輸入ADC時,只需將2.5 V基準(zhǔn)電壓輸出端連接到ADC的AIN-端,從而消除公式3中的2.5 V項。

  電阻R4使跨導(dǎo)放大器的噪聲增益保持在合理水平。R4的值需權(quán)衡兩個因素:噪聲增益的幅度和暴露于高濃度氣體時傳感器的建立時間誤差。對于本電路,R4 = 33 Ω,由此可計算噪聲增益等于380,如公式4所示。


  跨導(dǎo)放大器的輸入噪聲應(yīng)乘以此增益。ADA4505-2的0.1 Hz至10 Hz輸入電壓噪聲為2.95 μVp-p,因此輸出端的噪聲為:


  該輸出噪聲相當(dāng)于1.3 ppm p-p以上的氣體濃度,這種低頻噪聲難以濾除。幸好傳感器響應(yīng)非常慢,因此由R5和C6構(gòu)成的低通濾波器可以具有0.16 Hz的截止頻率。此濾波器的時間常數(shù)為1秒,與傳感器的30秒響應(yīng)時間相比可忽略不計。

  Q1為P溝道JFET。電路啟動時,柵極電壓為VCC,晶體管斷開。系統(tǒng)關(guān)斷時,柵極電壓降至0 V,JFET開啟,使RE端和WE端保持相同的電位。當(dāng)電路再次啟動時,這可以大大改善傳感器的開啟建立時間。

  該電路由兩節(jié)AAA電池供電。使用二極管提供反向電壓保護會浪費寶貴的電能,因此本電路使用P溝道MOSFET (Q2)。該MOSFET通過阻塞反向電壓來保護電路,施加正電壓時導(dǎo)通。MOSFET的導(dǎo)通電阻小于100 mΩ,因此它引起的壓降遠(yuǎn)小于二極管。除AAA電池以外,降壓-升壓調(diào)節(jié)器ADP2503還允許使用最高5.5 V的外部電源。在省電模式下工作時,ADP2503的功耗僅38 μA。由L2、C12和C13構(gòu)成的濾波器可消除模擬電源軌產(chǎn)生的任何開關(guān)噪聲。連接外部電源時,該儀表不是通過一個電路來斷開電池,而是利用一個插孔以機械方式斷開電池,從而避免電能浪費。

  使用AAA電池時,正常情況(未檢測到氣體)下的總功耗約為100 μA,最差情況(檢測到2,000 ppm CO)下的總功耗約為428 μA。如果該儀表與一個微控制器相連,在不進行測量時可進入低功耗待機模式,則電池壽命可達1年以上。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉