基于1ppm DAC的精密儀器儀表設(shè)計(jì)
*熱電電壓
熱電電壓是塞貝克(Seebeck)效應(yīng)的結(jié)果:異質(zhì)金屬結(jié)面處會(huì)產(chǎn)生與溫度相關(guān)的電壓。所產(chǎn)生的電壓在0.2μV/℃(銅-銅結(jié)面)至1mV/℃(銅-銅氧化物結(jié)面)之間。
熱電電壓表現(xiàn)為與1/f噪聲相似的低頻漂移。使所有連接保持整潔,消除氧化物,并且屏蔽電路使其不受氣流影響,可以大幅降低熱電電壓。下圖顯示了開放式電路與屏蔽式電路在電壓漂移上的差異。
開放式系統(tǒng)和封閉式系統(tǒng)的電壓漂移與時(shí)間關(guān)系
精密模擬IC雖然很穩(wěn)定,但確實(shí)會(huì)發(fā)生長期老化變化。DAC的長期穩(wěn)定性一般好于0.1ppm/1000小時(shí),但老化不具累積性質(zhì),而是遵循平方根規(guī)則。若某個(gè)器件的老化速度為1ppm/1000小時(shí),則2000小時(shí)老化2ppm,3000小時(shí)老化3ppm,依此類推。一般地,溫度每降低25°C,時(shí)間就會(huì)延長10倍;因此,當(dāng)工作溫度為100°C時(shí),在10000小時(shí)的期間(約60星期),預(yù)計(jì)老化為0.1ppm。以此類推,在10年期間,預(yù)計(jì)老化為0.32ppm。
電路構(gòu)建和布局
在注重精度的電路中,精心考慮電源和接地回路布局有助于確保達(dá)到額定性能。在設(shè)計(jì)PCB時(shí),應(yīng)采用模擬部分與數(shù)字部分相分離的設(shè)計(jì),并限制在電路板的不同區(qū)域內(nèi)。
必須采用足夠大(10μF)的電源旁路電容,與每個(gè)電源上的0.1μF電容并聯(lián),并且盡可能靠近封裝。這些電容應(yīng)具有低等效串聯(lián)電阻和低等效串聯(lián)電感。各電源線路上若串聯(lián)一個(gè)鐵氧體磁珠,則可進(jìn)一步降低通過器件的高頻噪聲。
電源線路應(yīng)采用盡可能寬的走線,以提供低阻抗路徑,并減小電源線路上的毛刺噪聲影響。時(shí)鐘等快速開關(guān)信號應(yīng)利用數(shù)字地屏蔽起來,以免向電路板上的其它器件輻射噪聲,并且絕不應(yīng)靠近基準(zhǔn)輸入或位于封裝之下。避免數(shù)字信號與模擬信號交叉,且它們在電路板相反兩側(cè)上的走線應(yīng)彼此垂直,以減小電路板的饋通影響。
構(gòu)建1ppm模數(shù)轉(zhuǎn)換解決方案
一種典型的現(xiàn)代1ppm模數(shù)轉(zhuǎn)換解決方案由兩個(gè)16位數(shù)模轉(zhuǎn)換器構(gòu)成——一個(gè)主DAC和一個(gè)輔助DAC。其輸出經(jīng)縮放和組合后產(chǎn)生更高的分辨率。主DAC輸出與經(jīng)衰減的輔助DAC輸出相加,使輔助DAC填補(bǔ)主DAC LSB步長之間的分辨率間隙。
組合后的輸出需要具備單調(diào)性,但線性度無需極高,因?yàn)楦咝阅苁峭ㄟ^精密模數(shù)轉(zhuǎn)換器的恒定電壓反饋取得的,該轉(zhuǎn)換器會(huì)校正固有的元件誤差。因此,電路精度受ADC的限制而不受限于DAC。然而,由于要求恒定電壓反饋以及不可避免的環(huán)路延遲,這種解決方案速度較慢,建立時(shí)間可能長達(dá)數(shù)秒。
盡管這種電路能夠取得1ppm的精度,但設(shè)計(jì)難度較大,很可能需要重復(fù)設(shè)計(jì)多次,而且需要通過軟件引擎和精密ADC來實(shí)現(xiàn)目標(biāo)精度。為了保證1ppm的精度,ADC還需進(jìn)行校準(zhǔn),因?yàn)槟壳笆袌錾线€沒有保證1ppm線性度的ADC。此處所示框圖只是概念的展示,真實(shí)的電路要復(fù)雜得多,涉及多個(gè)增益、衰減和求和級,并包括許多元件。
同時(shí)還需要數(shù)字電路,以方便DAC與ADC之間的接口,更不用說用于誤差校正的軟件了。
評論