基于骨架模板配準(zhǔn)的OLED顯示屏斑痕缺陷檢測技術(shù)
在遞歸調(diào)用過程中,t=t+1,直至遞歸結(jié)束,t=254。該算法進(jìn)行遞推改進(jìn)后可提高計(jì)算效率80%。
4 缺陷圖像實(shí)例
實(shí)驗(yàn)表明,本文提出的以顯示屏骨架為基準(zhǔn)的圖像配準(zhǔn)與檢測技術(shù)能夠有效地提取出顯示屏的斑痕缺陷。在算法的處理效率方面,以Visual Studio 2008為開發(fā)環(huán)境,在配置為CPU T6500、內(nèi)存2 GB的筆記本上測試一幅分辨率為1280×960的圖像,算法所耗時(shí)間為282 ms,其中骨架提取約219 ms,差影法約16 ms,大津法(OTSU算法)約2 ms。
本文在傳統(tǒng)的差影法的基礎(chǔ)上,對(duì)圖像配準(zhǔn)時(shí)的搜索策略進(jìn)行改進(jìn),提出了一種基于骨架模板配準(zhǔn)的OLED顯示屏斑痕缺陷檢測方法,利用分塊配準(zhǔn)的方式,解決了配準(zhǔn)時(shí)顯示屏小角度的旋轉(zhuǎn)所帶來的影響,能有效地檢測顯示屏的斑痕缺陷,且耗時(shí)短,可滿足實(shí)時(shí)檢測的要求。
參考文獻(xiàn)
[1] 張昱,張健.基于多項(xiàng)式曲面擬合的TFT—LCD斑痕缺陷自動(dòng)檢測系統(tǒng)[J].光電工程,2006,33(10):108-114.
[2] 唐劍,王大巍.B樣條曲面擬合在Mura缺陷獲取中的應(yīng)用[J].現(xiàn)代顯示,2008(89):24-28.
[3] YEN P L. Automatic optical inspection on TFT-LCD mura defects using background image reconstruction [J]. Key Engineering Materials, 2008,364/366:400-403.
[4] KUO C C. Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and ′just noticeable difference′ quantification strategies[J]. Measurement Science Technology,2008,19(1):015507-1-015507-10.
[5] 呂俊啟.一種有效的二值圖像細(xì)化算法[J].計(jì)算機(jī)工程,2003,29(18):147-148.
[6] 蘇小紅,何志廣,馬培軍.TFT—LCD微米級(jí)顯示缺陷的自動(dòng)檢測算法[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2008,40(11):1756-1760.
[7] OTSU N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on System, Man, and Cybernetics, 1979,SMC-9(1):62-66.
[8] 景曉軍,蔡安妮,孫景鰲.一種基于二維最大類間方差的圖像分割算法[J].通訊學(xué)報(bào),2001,22(4):71-76.
[9] 李了了,鄧善熙.基于大津法的圖像分塊二值化算法[J].微型計(jì)算機(jī)信息,2005,21(8-3):76-77.
評(píng)論