關(guān) 閉

新聞中心

EEPW首頁 > 工控自動化 > 設(shè)計應(yīng)用 > 無線傳感器網(wǎng)絡(luò)CSMA協(xié)議的設(shè)計與實現(xiàn)

無線傳感器網(wǎng)絡(luò)CSMA協(xié)議的設(shè)計與實現(xiàn)

作者: 時間:2011-07-31 來源:網(wǎng)絡(luò) 收藏

3.1 信號強度閾值的更新機制

  閾值的動態(tài)更新必須使用大量的實時RSSI值作為統(tǒng)計值,且需要把RSSI值分為兩類: 一類是信道繁忙時的RSSI,本文稱為busyRSSI;另一類是信道空閑時的RSSI值,本文稱為noiseRSSI。這兩個值可以在物理層每接收到一個數(shù)據(jù)包時獲取,因為CC2420接收到一個數(shù)據(jù)包時將在數(shù)據(jù)包的倒數(shù)第二個字節(jié)(FCS域)自動填充接收時的RSSI值,因此busyRSSI值就無條件地得到了;而在剛接收完數(shù)據(jù)包后信道一般都是空閑的,所以這時立即讀取當(dāng)前的RSSI值,就可以得到noiseRSSI值。為避免例外,可將得到的noiseRSSI值與minSignal進行比較,如果大于等于minSignal就丟棄。

  在獲得busyRSSI和noiseRSSI后就對其進行統(tǒng)計操作,為這個目的需要維護一個統(tǒng)計變量avgSignal,用來統(tǒng)計所有的busyRSSI值。avgSignal的初值等于minSignal的初值即初始閾值,并按1/4的權(quán)重進行統(tǒng)計,即avgSignal = (avgSignal?1) + ((avgSignal + busyRSSI)?2)。noiseRSSI的值并不需要統(tǒng)計,這是因為讀出noiseRSSI的值很穩(wěn)定幾乎不變。

  noiseLevel閾值的更新相對簡單,因為噪聲信號強度十分穩(wěn)定,因此不必對noiseRSSI做統(tǒng)計,每次讀取noiseRSSI后可直接對noiseLevel進行更新。更新規(guī)則也是采用1/4權(quán)重,即noiseLevel = (noiseLevel ? 1) + ((noiseLevel + noiseRSSI) ? 2)。

  minSignal閾值需要針對兩種互補的情況來進行更新調(diào)整。第一種情況是一段時間內(nèi)的采樣結(jié)果全是信道空閑,說明所有的采樣值都小于minSignal,因此有可能minSignal的值過高,應(yīng)對其調(diào)整將其適當(dāng)降低。該情況在監(jiān)測信道結(jié)果為空閑時觸發(fā)更新,更新方法是直接利用當(dāng)前的busyRSSI來更新;只要busyRSSI的值小于當(dāng)前的minSignal值,那么就將busyRSSI的值作為最新的minSignal值。這樣做是因為在busyRSSI的信號強度下已經(jīng)能夠接收數(shù)據(jù)了,而busyRSSI又比當(dāng)前的minSignal要小,所以更接近實際的閾值。

  第二種情況是對第一種情況的補充。在做了第一種情況的修改后,如果長時間內(nèi)監(jiān)測到的都是信道繁忙(如載波監(jiān)聽幾次回退后都返回繁忙),那么就可能是minSignal的值設(shè)置得太低,因此要適當(dāng)調(diào)高該值,以避免使用第一種更新方式后由于設(shè)置的minSignal值太低而導(dǎo)致不能使用信道的情況。該情況提供一個接口由上層(MAC層)來調(diào)用更新。更新需要借助統(tǒng)計量avgSignal,更新的偽代碼如下(其中initBusySingal指的是minSignal的最初值):

//如果minSignal大于或等于初值,就說明沒有進行第一種
//更新,所以沒有進行第二種更新的必要
if (minSignal initBusySignal){
//更合理地提高minSignal值,不能一下將minSignal大幅度提
//高,且要保證更新后minSignal比initBusySignal小
  if (avgSignal initBusySignal){
    minSignal = (minSignal + avgSignal) ? 1;
  }
  else{
    minSignal = (minSignal + initBusySignal) ? 1;
  }
}

  initBusySignal的選擇將在后面介紹,它的選擇對更新機制尤為重要。因為minSignal的更新機制建立的基礎(chǔ)就是initBusySignal非常接近實際臨界值。initBusySignal本身也是經(jīng)過大量測試后選擇的一個信道活動最小強度值,而它肯定會大于(最小等于)實際的臨界值,所以minSignal更新后應(yīng)該比initBusySignal小才對。

3.2 信號強度閾值初始值的選擇

  信號強度閾值的初始值必須根據(jù)實際測試緄拇罅殼慷戎道瓷瓚ǎ如果設(shè)置失誤,將導(dǎo)致信道狀態(tài)判斷不準確。本文假設(shè)兩個初值分別是initNoiseSignal和initBusySignal。下面給出部分測試強度的數(shù)據(jù),如表1所列。測試時使用兩個節(jié)點,且兩個節(jié)點都是使用新電池(即電源充沛)。表中,“阻隔”指的是一堵大約10 cm厚的墻。

表1 信號強度測試數(shù)據(jù)
按此在新窗口瀏覽圖片

  在雙方節(jié)點能通信的前提下,本文測到的busyRSSI的最小值為0x54。根據(jù)上一小節(jié)的論述,initBusySignal的值可以略高,但因為該值是在電量充足且有阻隔的情況下測試緄淖钚∏康髦擔(dān)因此可以直接取為busyRSSI的最小值,即initBusySignal的值設(shè)置為0x54。對于initNoiseSignal的取值,從表1可以看出,檢測到的RSSI值非常穩(wěn)定,信道空閑時噪聲強度幅度不大,因此取值比0x4D略大就可以了。本文中initNoiseSignal取值為0x4E。

3.3 本文的信道監(jiān)測機制的優(yōu)點

  本文的信道監(jiān)測機制比較完善且十分靈活。完善是指信道活動狀態(tài)判定規(guī)則十分完備,不僅有基本判定和擴展判定,而且還有閾值更新機制,進一步確保了判定結(jié)果的正確性;靈活是指向調(diào)用方提供了采樣窗口數(shù)的設(shè)置,使得調(diào)用方可以在每次監(jiān)測時使用不同的采樣窗口數(shù),可以被LPL、BMAC等有特殊要求的基于競爭的MAC直接調(diào)用。

4的實現(xiàn)

  本文實現(xiàn)的CAMA是基于使用廣泛的非持續(xù)性協(xié)議的,即節(jié)點在發(fā)送數(shù)據(jù)包之前先監(jiān)測信道,如果監(jiān)測到信道空閑,則該節(jié)點就自己開始發(fā)送數(shù)據(jù)包。反之,如果監(jiān)測結(jié)果為信道繁忙,即信道已經(jīng)被鄰居節(jié)點占用,則該節(jié)點回退一段隨機時間后,再次開始監(jiān)測,重復(fù)上面的操作。

  在具體實現(xiàn)協(xié)議時,本文結(jié)合信道監(jiān)測提供的接口對協(xié)議做了一些優(yōu)化調(diào)整。另外,由于中節(jié)點間距離很短,一般忽略傳播延遲,因此具體的實現(xiàn)與標(biāo)準的CSMA協(xié)議有些不同,但原理一致,其實現(xiàn)如下:

  如果節(jié)點要發(fā)送數(shù)據(jù)包,需要先進行載波監(jiān)聽,首先隨機選擇一個采樣窗口數(shù)(即信道采樣次數(shù)),該采樣數(shù)屬于某一個范圍,本文選擇為8~32。采樣數(shù)隨機選擇的目的是減少沖突,舉例說明:假設(shè)信道目前空閑,A、B、C三個節(jié)點都是鄰居節(jié)點,且A、B節(jié)點有數(shù)據(jù)包要發(fā)送給節(jié)點C;A、B兩個鄰居節(jié)點同時開始監(jiān)測,如果采樣窗口數(shù)固定,根據(jù)信道監(jiān)測的規(guī)則,信道空閑必須等到采樣數(shù)用完才能下結(jié)論,那么A、B節(jié)點都在用完所有的采樣數(shù)后得縲諾攬障械慕崧郟然后都發(fā)送數(shù)據(jù)包,這樣數(shù)據(jù)在節(jié)點C處就發(fā)生了沖突,最后A、B兩節(jié)點就必須依靠隨機回退一段時間后再次監(jiān)測信道。采用隨機的采樣窗口數(shù)可以降低上面情況的發(fā)生率。因為采樣窗口數(shù)小的節(jié)點(假設(shè)為節(jié)點A)先得出信道空閑的結(jié)論并發(fā)送數(shù)據(jù)包,采樣窗口數(shù)大的節(jié)點B在后面的采樣中發(fā)現(xiàn)信道繁忙(因為節(jié)點A已經(jīng)占用了信道)就回退,避免了發(fā)生沖突。

  回退時間的選擇也是值得推敲的一個參數(shù)。CC2420是以數(shù)據(jù)包為單位發(fā)送的射頻芯片,其最大數(shù)據(jù)包的長度為128字節(jié),加上同步頭5字節(jié),總共是133字節(jié)。CC2420的發(fā)送速率是250 kb/s,即發(fā)送一個字節(jié)的時間為32 μs,因此發(fā)送一個最大數(shù)據(jù)包的時間為133×32=4 256 μs。根據(jù)信道采樣規(guī)則,只要一采樣到信道占用,就可以結(jié)束本次監(jiān)測并得出信道繁忙的結(jié)論,因此回退時間應(yīng)該要大于數(shù)據(jù)包的發(fā)送時間。又因為采樣窗口數(shù)已經(jīng)采用了隨機選取,所以回退時間可以使用固定值。因此可以將回退時間固定為4.5 ms,回退功能的具體實現(xiàn)只需要一個定時器輔助就可以了。

  最后,要處理信道強度閾值更新的問題。如果MAC層連續(xù)對信道監(jiān)測的結(jié)果都是繁忙,且累計超過一個預(yù)設(shè)的閾值Y,就必須要調(diào)用MAC層提供的接口來對minSignal閾值進行更新,參照上節(jié)信號強度閾值的更新機制。根據(jù)實際的測試分析,Y的取值一般為30~60。

結(jié)語

  本文靈活利用CC2420射頻芯片的特點,并實現(xiàn)了一整套從物理層到MAC層的CSMA協(xié)議的實現(xiàn);并詳細闡述了協(xié)議中信道監(jiān)測使用的所有判定規(guī)則及各關(guān)鍵閾值參數(shù)的選擇。經(jīng)過實際的多節(jié)點通信測試,該CSMA協(xié)議可以正確、穩(wěn)定地進行信道活動監(jiān)測,并實時動態(tài)地調(diào)整閾值;并且該CSMA協(xié)議的可以完全嵌入應(yīng)用到其他MAC層協(xié)議中,輔助其他協(xié)議完成信道競爭或信道檢測。


上一頁 1 2 3 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉