開關(guān)電源功率因數(shù)校正的DSP實現(xiàn)
式中:ω是濾波頻率的角速度;
Q值按不同的要求確定。
離散化可以由Matlab的sysd=c2d(sys,Ts)方程方便地實現(xiàn)。圖3所示的就是所設(shè)計濾波器的Matlab模擬圖,其中ω=628,Q=20。
圖3 數(shù)字陷波器的Matlab模擬
4 DSP實現(xiàn)
我們采用TI公司的16位芯片TMS320LF2407A來實施控制方案。這款芯片專門用于數(shù)字控制的2000系列,采用哈佛結(jié)構(gòu)的CPU和4級流水性操作的程序控制,運行速度是40MIPS(即25ns的指令周期)。它具有544字節(jié)的DARAM,2k的SARAM,32k的FLASH,2個事件管理單元,16路10bit、轉(zhuǎn)換時間500ns的A/D轉(zhuǎn)換,最多16路的PWM輸出等片內(nèi)資源。
對電流回路和電壓回路,我們分別采取20kHz和10kHz的控制頻率。兩個中斷程序被用來完成PFC的數(shù)字控制,中斷程序int2負(fù)責(zé)3個輸入的采樣及電流回路的PI控制,另一個中斷程序int3負(fù)責(zé)電壓回路的PI控制及陷波濾波。圖4是主程序控制流程圖,圖5是采樣周期圖。其中int2的中斷優(yōu)先級高于int3,所以若int3沒完成,而int2中斷發(fā)生時,int3將懸掛直到int2中斷程序運行結(jié)束才繼續(xù)運行。因為電壓回路的變化比較緩慢,所以一個周期的延時不會影響控制效果。設(shè)置比較控制寄存器,在T1下溢的時候?qū)懭胄碌谋容^值,結(jié)合通用定時器周期寄存器T1PR的值,產(chǎn)生新的占空比的PWM波,控制與之相連的開關(guān)管的動作。從圖5中我們也可以注意到,int2的中斷程序(包括3個采樣和一個PI程序)必須在半個電流采樣周期,即25μs之內(nèi)完成。根據(jù)前面給出的DSP的性能指標(biāo),這個目標(biāo)完全可以達(dá)到。
圖4 主程序流程圖
圖5 采樣周期圖
另外,在實際應(yīng)用中,采用的是積分分離的PI算法,把PI的輸出值限定在一定的范圍之內(nèi),避免使系統(tǒng)產(chǎn)生很大的超調(diào)量而引起系統(tǒng)振蕩。還加入了軟啟動程序,在程序剛開始的時候逐步加大Vref的值,從而達(dá)到開關(guān)電源的軟啟動要求。
因為像Kp,Ki及濾波器系數(shù)等這些參數(shù)都是浮點數(shù),而所用的是16位的芯片,所以用DSP實現(xiàn)以上算法,還需要解決浮點數(shù)和定點數(shù)之間相互轉(zhuǎn)換的問題??梢杂貌煌腝n值來表達(dá)不同范圍和精度的浮點數(shù),其中n表示16位中小數(shù)點之后的位數(shù)。例如,Q0可表示-32768到32767的整數(shù),而Q15可表達(dá)-1到0.9999695之間精度為1/32768的實數(shù)[2]。不同的Qn值之間需要經(jīng)過移位,轉(zhuǎn)換為相同的位數(shù)才能進(jìn)行比較和加減運算。
5 實驗結(jié)果
程序編譯通過后,燒入片內(nèi)flash,外加簡單的外圍電路,就可以進(jìn)行實驗驗證了。我們采用的是Boost電路的拓?fù)浣Y(jié)構(gòu),接電阻負(fù)載,輸入電壓220V,輸出電壓385V,得到的輸入電壓電流波形如圖6所示。用功率表測得PFC電路的輸入功率為545W,輸出功率為513W,可以計算出PFC電路變換效率為94.1%。在相同測試條件下,用功率因數(shù)表測得的PFC電路的功率因數(shù)為0.983。圖7所示的是軟啟過程。
圖6 BOOSTPFC電路輸入電壓電流圖
圖7 軟啟動波形圖
6 結(jié)語
本文探討了開關(guān)電源功率因數(shù)調(diào)整的全數(shù)字實現(xiàn)方案,實驗證明了該方案的可行性。目前,對開關(guān)整流器件采用DSP控制的研究開展的還不多,主要是由于相對于專用的集成芯片DSP的價格比較高昂,而且成熟的控制算法難以獲得。然而,隨著DSP芯片價格的不斷降低和控制算法的研究不斷深入,相信開關(guān)整流器件數(shù)字控制的時代很快就會到來。
評論