在物聯(lián)網(IoT)廣泛普及的推動下,預計全球聯(lián)網設備的數量將呈指數級增長。數據量的增加也在加大整個網絡的功耗,促使政府出臺提升消費電子產品、服務器和數據中心能效的強制規(guī)定。同時,執(zhí)行關鍵任務的IoT應用需要冗余度與預估潛在停機時間的能力。
為了促進業(yè)界對這些急迫需求加以響應,在電信網、企業(yè)網和物聯(lián)網(IoT)網絡中推進“以太網無處不在”策略的領先芯片解決方案供應商Vitesse Semiconductor公司日前宣布:推出兩款雙端口千兆以太網(GE)PHY參考設計,它們皆
關鍵字:
物聯(lián)網 Vitesse EMI
1 引言
電磁兼容是一門新興的跨學科的綜合性應用學科。作為邊緣技術,它以電氣和無線電技術的基本理論為基礎,并涉及許多新的技術領域,如微波技術、微電子技術、計算機技術、通信和網絡技術以及新材料等。電磁兼容技術應用的范圍很廣,幾乎所有現代化工業(yè)領域,如電力、通信、交通、航天、軍工、計算機和醫(yī)療等都必須解決電磁兼容問題。其研究的熱點內容主要有:電磁干擾源的特性及其傳輸特性、電磁干擾的危害效應、電磁干擾的抑制技術、電磁頻譜的利用和管理、電磁兼容性標準與規(guī)范、電磁兼容性的測量與試驗技術、電磁泄漏與靜電放電
關鍵字:
EMI 濾波器
磁珠和電感在解決EMI和EMC方面的作用有什么區(qū)別,各有什么特點,是不是使用磁珠的效果會更好一點呢?
磁珠專用于抑制信號線、電源線上的高頻噪聲和尖峰干擾,還具有吸收靜電脈沖的能力。磁珠是用來吸收超高頻信號,象一些RF電路,PLL,振蕩電路,含超高頻存儲器電路(DDRSDRAM,RAMBUS等)都需要在電源輸入部分加磁珠,而電感是一種蓄能元件,用在LC振蕩電路,中低頻的濾波電路等,其應用頻率范圍很少超過50MHZ. 磁珠有很高的電阻率和磁導率,等效于電阻和電感串聯(lián),但電阻值和電感值都隨頻率變化。
關鍵字:
磁珠 電感 EMI EMC
在解釋EMC之前,先提倆關鍵詞,EMC與EMI,想必電子工程師們都比較熟悉,更非常頭痛。小編讀研做PCB設計時,曾深受其苦。前事不忘后事之師,小編立志整理出史上最全EMC知識大合集,于是,EMC電子百科全書有了,請看正文:
1 EMC是什么意思:一切從概念開始!
根據百度百科的解釋,電磁兼容性EMC(Electro Magnetic Compatibility),是指設備或系統(tǒng)在其電磁環(huán)境中符合要求運行并不對其環(huán)境中的任何設備產生無法忍受的電磁干擾的能力。因此,EMC包括兩個方面的要求
關鍵字:
EMC EMI PCB
在模擬電路中,對電磁干擾特別敏感,經常碰到的就是開關電源,它的反饋信號就是模擬信號,很容易受到它自身的開關信號干擾,所以在LAYOUT時要特別注意這一點,否則做出來的電源,輕則紋波太大,重則不能工作。
反饋回路受到的干擾一般分為兩種:傳導與輻射。針對傳導,在元器件布局時就要注意了,不要將反饋回路糾結在開關信號中,反饋信號中的地線,從輸出端引出,不要就近原則。讓反饋回路獨立,遠離其他路徑。如下圖。(此圖變壓器初級地線有問題)
關于輻射干擾,我認為就是電流變化,在其
關鍵字:
PCB LAYOUT EMI
在您的電源中很容易找到作為寄生元件的100fF電容器。您必須明白,只有處理好它們才能獲得符合EMI標準的電源。
從開關節(jié)點到輸入引線的少量寄生電容(100 毫微微法拉)會讓您無法滿足電磁干擾(EMI)需求。那100fF電容器是什么樣子的呢?在Digi-Key中,這種電容器不多。即使有,它們也會因寄生問題而提供寬泛的容差。
不過,在您的電源中很容易找到作為寄生元件的100fF電容器。只有處理好它們才能獲得符合EMI標準的電源。
圖1是這些非計劃中電容的一個實例。圖中的右側是一個垂直安裝
關鍵字:
EMI 電容
總是有童靴在EEPW論壇問開關電源的東西,今天以常用的反激開關電源的電路圖為例,讓大家輕松讀懂開關電源電路圖!
一, 先分類
開關電源的拓撲結構按照功率大小的分類如下:
10W以內常用RCC(自激振蕩)拓撲方式
10W-100W以內常用反激式拓撲(75W以上電源有PF值要求)
100W-300W 正激、雙管反激、準諧振
300W-500W 準諧振、雙管正激、半橋等
500W-2000W 雙管正激、半橋、全橋
2000W以上 全橋
二, 說重點
關鍵字:
開關電源 EMI 光電耦合器
顯示器通常也被稱為監(jiān)視器。顯示器是屬于電腦的I/O設備,即輸入輸出設備。它可以分為CRT、LCD等多種。它是一種將一定的電子文件通過特定的傳輸設備顯示到屏幕上再反射到人眼的顯示工具。本文為大家介紹電子顯示屏、等離子顯示屏、液晶顯示屏及硅基液晶顯示屏的經典應用案例,供大家參考。
藍牙無線顯示屏系統(tǒng)的設計方案
本文介紹一種藍牙無線顯示屏系統(tǒng)的設計方案。使用藍牙技術可以短距離無線控制顯示終端,實現圖像和字符數據的無線傳輸和顯示,免去了有線連接所帶來的缺陷,可以應用在多種領域。
基于觸摸顯示
關鍵字:
EMI ESD
隨著手機中LCD及相機的視頻分辨率越高,數據工作的頻率將超過40MHz,對抑制無線EMI與ESD而言,傳統(tǒng)的濾波器方案已達到它們的技術極限。為適應數據速率的增加且不中斷視頻信號,設計者可以選擇本文討論的新型低電容、高濾波性能EMI濾波器。
隨著無線市場的繼續(xù)發(fā)展,下一代手機將擁有更多的功能特性,例如帶多個彩屏(每部手機至少有兩個彩屏)以及百萬像素以上的高分辨率相機等。
圖1:LCD模塊周圍的噪聲與ESD傳輸路徑
仍舊受緊湊設計趨勢的推動,實現高分辨率LCD
關鍵字:
顯示屏 EMI GSM
解決EMI問題的辦法很多,現代的EMI抑制方法包括:利用EMI抑制涂層、選用合適的EMI抑制零配件和EMI仿真設計等。本文從最基本的PCB布板出發(fā),討論PCB分層堆疊在控制EMI輻射中的作用和設計技巧。
電源匯流排
在IC的電源引腳附近合理地安置適當容量的電容,可使IC輸出電壓的跳變來得更快。然而,問題并非到此為止。由於電容呈有限頻率響應的特性,這使得電容 無法在全頻帶上生成干凈地驅動IC輸出所需要的諧波功率。除此之外,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會形成電壓降,這些瞬態(tài)電
關鍵字:
PCB EMI
簡介
現在,高性能電源系統(tǒng)已經有了長足進展,設計人員正在使用多個輸入電壓,驅動種類繁多應用的多路電壓軌。由于確保PoL穩(wěn)壓器盡可能靠近負載的需求,設計人員需要在一個非常小的范圍裝滿大量功率轉換功能。與此同時,企業(yè)資源正趨于擴展到工程師期望的多任務地步,常常是由多面手,而不是電源專家來負責設計電源系統(tǒng)。因此,當今復雜的電源要求可能令設計人員非常頭痛:如何利用不同資源為多樣化的負載提供高性能電源,從而保證架構的所有部分都在其功率和散熱范圍內運行,同時還可優(yōu)化效率和成本目標。
新的應用帶來了進一
關鍵字:
Vicor 電源設計 EMI
1 引言
目前,PWM功率變換技術得到了廣泛的應用。對于工作在硬開關狀態(tài)下的PWM逆變器,由于其開關損耗大,并且產生嚴重EMI,難以滿足開關電源高頻化、綠色化的要求。為克服硬開關的不足,軟開關技術得到迅速的發(fā)展,特別是DC/DC變換器移相軟開關技術已趨于成熟。但對于DC/AC變換器,由于考慮其輸出波形質量等因素,目前,還沒有真正意義上的軟開關產品出現。雖然也出現過一些DC/AC變換器拓撲和軟開關控制技術[1][2][3],但這些方法還不能真正走向實用。
文獻[4]介紹了用諧振電路實現軟開關
關鍵字:
SPWM DC/AC MC51 EMI
解決EMI問題的辦法很多,現代的EMI抑制方法包括:利用EMI抑制涂層、選用合適的EMI抑制零配件和EMI仿真設計等。本文從最基本的PCB布板出發(fā),討論PCB分層堆疊在控制EMI輻射中的作用和設計技巧。
電源匯流排
在IC的電源引腳附近合理地安置適當容量的電容,可使IC輸出電壓的跳變來得更快。然而,問題并非到此為止。由於電容呈有限頻率響應的特性,這使得電容 無法在全頻帶上生成干凈地驅動IC輸出所需要的諧波功率。除此之外,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會形成電壓降,這些瞬態(tài)電
關鍵字:
PCB EMI 電容
Littelfuse公司是全球電路保護領域的領先企業(yè),日前宣布推出了SP5001、SP5002和SP5003系列瞬態(tài)抑制二極管陣列(SPA®二極管)。 這些高度集成的共模濾波器(CMF)可為使用高速差分串行接口的系統(tǒng)同時提供靜電放電(ESD)保護和共模濾波功能。 它們可以保護和過濾兩個(SP5001和SP5003)或者三個(SP5002)差分線對。 上述產品采用符合RoHS規(guī)范的TDFN封裝和緊湊型設計,與離散型解決方案相比可顯著節(jié)約成本和空間。 這些符合AEC-Q101標準的器件非常適用于消
關鍵字:
Littelfuse 二極管陣列 EMI
什么是EMI?和EMS與EMC有什么區(qū)別?
在電氣干擾領域有許多英文縮寫。這里所提EMI(Electro Magnetic Interference)直譯是電磁干擾。這是合成詞,我們應該分別考慮“電磁”和“干擾”。
所謂“干擾”,指設備受到干擾后性能降低以及對設備產生干擾的干擾源這二層意思。第一層意思如雷電使收音機產生雜音,摩托車在附近行駛后電視畫面出現雪花,拿起電話后聽到無線電聲音等,這些可以簡稱其為與“
關鍵字:
EMI EMS EMC
(emi)介紹
您好,目前還沒有人創(chuàng)建詞條(emi)!
歡迎您創(chuàng)建該詞條,闡述對(emi)的理解,并與今后在此搜索(emi)的朋友們分享。
創(chuàng)建詞條
關于我們 -
廣告服務 -
企業(yè)會員服務 -
網站地圖 -
聯(lián)系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網安備11010802012473